הבעיות של SSD NVME בשרתים

Print Friendly, PDF & Email

עדכון: הפוסט שונה כדי לתאר את המצב שהבעיות מתחילות כשצריך גם קריאה/כתיבה גבוהה וגם כשהאפליקציות צריכים ביצועי מעבד גבוהים. במצב ניצול CPU נמוך, הבעיות כמעט ולא קיימות כי אין יניקת אוויר מאסיבית.

לפני מס' שבועות קיבלתי פניה מחברה מאוד גדולה (קיבלתי אישור לפרסם את העניין פה בפוסט) עם בעיה די מעניינת: הם רכשו שרת של HP עבור פרויקט מסויים שמצריך תעבורת נתונים במהירות מקסימלית תוך שימוש מאוד כבד במעבדים עם האפליקציה שלהם. הם רכשו דיסקים SSD NVME של אינטל מ-HP ו"על הנייר" הדיסקים והמערכת אמורים לתת את התוצאות שהם רוצים. לא חסר זכרון (יש 2 טרה), הדיסקים מחוברים ישירות דרך ה-PCI מה-Backplane עם הציוד ש-HP מכרו להם (אין בקר RAID כך שמדובר ב-RAID תוכנה ולא RAID-5) ובפועל המהירות מגיעה אולי ל-50% ואם מתחילים לשחק עם ה-Queue Depth אז המהירות יורדת ל-30%.

ב-HP האשימו את כל העולם ואחותו, כולל כמובן את הלינוקס שרץ על הברזל. באותה חברה החליטו לנסות Windows 2016 לראות אם הלינוקס אשם אבל גם שם התוצאות חזרו, ואז הם הגיעו אליי (היי, אני אשמח אם הם יהיו לקוחות קבועים שלי 🙂 ).

אז האם הבעיה קשורה למערכת ההפעלה? לא. גם לינוקס וגם Windows יכולים להתמודד עם NVME בלי שום בעיה. האם משהו דפוק בדיסקים או ב-Backplane המיוחד? גם לא. ה-Backplane עצמו אינו שונה מהותית מה-Backplane שקיים ב-DELL לדוגמא (כמובן שהלוח מעוצב מעט שונה) ובמקרה של לנובו עם שרתים כמו SR650 הפתרון שלהם נקרא Any Drive והוא לא מצריך Back Plane מיוחד – תדחוף SATA, SAS, SAS2, NVME – הכל עובד (לנובו ו-SuperMicro הם היחידים שהיו נבונים מספיק להכניס מתגי PLX ל-Back Plane מבלי שהלקוח יצטרך לרכוש תוספות).

בכדי להסביר את הבעיה, נסתכל בשרת DL320 דור 10 של HP מלמעלה:

מתחת למלבן האדום נמצאים הדיסקים. המלבן הצהוב מציין את המאווררים ששואבים אוויר דרך החורים ב-Caddy והחיצים הכחולים מציינים את כיוון האוויר (משמאל לימין). התכנון עצמו זהה גם בשרתי 2U של HP וגם אצל יצרנים אחרים. האויר חייב להגיע דרך חורי האיוורור שנמצאים ב-Caddy (בתמונה משמאל). לא רואים שיש הרבה חורים לאיוורור, אבל אם נכפיל כמות הכוננים ובעוד כמה חורים שיש – זה מספיק כדי שיכנס מספיק אויר.

וכאן בדיוק העניין: הדיסקים נמצאים לפני המאווררים, ואותם מאווררים מסתובבים במהירות די גבוהה (תלוי אם מדובר בשרת 1U או 2U או 3U – לכל אחד יש גודל מאווררים שונה – 5,10,12 או 14 ס"מ), ומכיוון שהאוויר נכנס דרך החורים בלחץ רציני, הוא קודם כל מקרר את הדיסקים בכוננים עקב ה"יניקה" של המאווררים, שזה מעולה לדיסקים מכניים ולשמירת החום הנמוך בשרת – 18-27 מעלות (השרת טכנית יכול לעבוד גם ב-40 מעלות אבל אז מאווררים יתחילו להישרף בתכיפות גבוהה).

בדיסקים SSD NVME לעומת זאת, הדברים הפוכים. SSD NVME צריך חום כדי לפעול, טמפרטורות כמו 25-40 מעלות למצב Idle וטמפרטורות כמו 40-65 מעלות במצב כתיבה וקריאה רציפים. רכיבי ה-Flash חייבים להיות חמים כדי לכתוב ולקרוא ביעילות. קר מדי? הכתיבה והקריאה יהיו איטיים. חם מדי (מעל 70 מעלות)? ה-SSD NVME יבצע Throttle כדי לשמור על עצמו. שימו לב – הדבר נכון רק כשמהעבדים מתאמצים וחום השרת עולה. במידה והשימוש במעבדים נע בין 10 ל-35% בערך, תקבלו עדיין ביצועי NVME די טובים (הטמפרטורה של ה-NVME עצמם לא משפיעים כמעט על החום בשרת עצמו, והם ניתנים למדידה עצמאית).

במילים אחרות – אם הכנסנו SSD NVME מקדימה ואנחנו מעמיסים גם על המעבדים, אנחנו די מבטיחים לעצמו שהדיסקים לא יגיעו לחום הרצוי כי האוויר מקרר את המתכת מלמעלה ולמטה. זה לא ממש רלוונטי אם אנחנו לא מחפשים את הביצועים הכי גבוהים, אבל אם אנחנו רוצים "לסחוט את המיץ" מה-SSD NVME – צריך פתרון אחר.

כדי לראות את הבעיה בצורה אחרת, הבה נסתכל על SSD NVME ל-Enterprise מבית אינטל. בתמונה מימין (כל יצרני השרתים מוכרים אותו) – תכירו: DC P4800X. זהו SSD די "חייתי", אם כי כמות האחסון שלו לא גדולה (עד 750 ג'יגהבייט) והוא מגיע ממשפחת ה-Optane שאינה NAND Flash רגיל.

כמו שאתם רואים, הכרטיס מכוסה לגמרי, למעט חורים בסוף הכרטיס ובתחילתו. הרבה אוויר לא נכנס ויוצא עם כמות החורים הללו, וזה בכוונה כי הכרטיס חייב להישאר חם על מנת לעבוד ביעילות.

אז אם נניח אנחנו רוצים להכניס עד 4 SSD NVME ולקבל ביצועים גבוהים, מה ניתן לעשות?

תכירו את את ה-Z Turbo Drive Quad Pro של HP. הכרטיס הזה משתמש בטריק שנקרא pci bifurcation, ובו המערכת "מפצלת"  PCIe X16 ל-4 "מסלולי" PCIe X4 ובכך מאפשרת ל-4 כרטיסי SSD M.2 NVME לעבוד ביחד. ישנו מאוורר בכרטיס המופעל ע"י בקר עצמאי כדי לשמור על החום כדי שיהיה ברמה המקובלת ל-SSD NVME. קונים כרטיס כזה, ומכניסים בתוכו עד 4 כרטיסי M.2 NVME (שקונים מיצרן השרתים), משנים הגדרה ב-BIOS/UEFI ומתחילים לעבוד. (הערה, הכרטיס הזה הוא עבור תחנות עבודה של HP, יכול להיות שיש לזה שם/דגם שונה לשרתים אבל פנימית הכל זהה). לכל היצרנים יש פתרון זהה.

הבעיה שתיארתי לעיל היא לא בעיה סודית, כל היצרנים (כולל יצרני SSD כמו סמסונג ואינטל) מכירים אותה והפתרונות יגיעו בשרתים חדשים, רק שכרגע יש מריבה בין אינטל לסמסונג לגבי סטנדרטים חדשים ל-SSD – סמסונג מציעה את NF1 שנכנס מקדימה עם מעטפת מתכת מיוחדת לשמירה על החום ולאינטל יש את פורמט ה"סרגל" שנקרא EDSFF (עכשיו יצרנים צריכים לבחור איזה מהפתרונות למכור, כי אין תאימות בין EDSFF ל-NF1).

כמובן שיהיו אלו שיאמרו שכבר יש בשרת חיבורי M.2 ואפשר להשתמש בהם לביצועים גבוהים – אך הבעיה שהפתרון אינו מכוסה (ולשים פתרון פד טרמי הוא פתרון גרוע ב-SSD, בגלל זה המדבקה על ה-M.2 SSD אינה מדבקת נייר אלא הפתרון הטרמי עצמו) והשרת עושה הכל כדי שכל השרת יהיה בטמפרטורה נמוכה, וכך הביצועים יורדים גם בתושבות M.2 שנמצאים על לוח האם בשרת.

לסיכום: אם אתם רוכשים מיצרן השרתים שלכם SSD NVME ואתם לא חייבים את הביצועי מעבדים ו-NVME הכי גבוהים, אפשר להכניס אותם מקדימה. לעומת זאת, אם ביצועים מאוד גבוהים תוך צריכת CPU גבוהה הם Must עבורכם, קחו כרטיס מיצרן השרתים המאפשר הכנסה של 4 כרטיסי M.2 NVME ותקבלו את הביצועים שביקשתם.

Comments

comments

כתיבת תגובה

האימייל לא יוצג באתר. שדות החובה מסומנים *

This site uses Akismet to reduce spam. Learn how your comment data is processed.