כמה מילים על SR-IOV

אם נסתכל היום כמעט בכל חברה שמשתמשת בפתרונות וירטואליזציה (לא חשוב אם זה vSphere, Hyper-V, XenServer או אחרים) – בד"כ הפתרון רץ כך:

  • יש סטורג' שמאחסן את ה-Datastore (יכול להיות סטורג' חיצוני, יכול להיות דיסקים מקומיים עם RAID-חומרה בתצורה כלשהי)
  • חיבורי רשת – או חיבור של 10 ג'יגה או חיבור של מס' פורטים 1 ג'יגה (בנפרד, ב-Teaming/Bonding)
  • מעבד יחיד או זוג Xeon פר מכונה
  • זכרון

ברוב מוחץ של אותם מקרים, כל ה"ציוד" בכל מכונה וירטואלית – הוא ציוד Paravirtualized, כלומר זהו ציוד "מדומה" חלקית, כאשר מאחורי הקלעים יש ציוד אמיתי שעושה את העבודה. כך לדוגמא אם אתם משתמשים בכרטיס רשת ב-vSphere, סביר להניח שאתם משתמשים ב-VMXNET3, זהו ציוד Paravirtualized שבעצם מתממשק לחלק ה-Network של ESXI (ה-VMKERNEL) ומשם הוא מתחבר לציוד הפיזי ופאקטים יוצאים ונכנסים. אם נשתמש לעומת זאת ב-E1000 (או e1000e שקיים בפתרונות וירטואליזציה אחרים כמו RHV/KVM) – כאן מדובר באמולציה מלאה של כרטיס הרשת של אינטל והאמולציה מדמה את הכרטיס (כמעט) אחד לאחד ובסופו של דבר מעבירה את הנתונים מ/אל ה-STACK רשת של פתרון הוירטואליזציה. אותו דבר קורה עם דיסקים, תצוגה וכו' וכו'.

כל ההגדרות לעיל הם טובות עם ביצועים לא רעים בכלל. יחד עם זאת, יש בלא מעט מקומות דרישה לקבל יותר – ביצועים גבוהים יותר של רשת, או ב-VDI כשצריכים משהו שהוא יותר מאשר אמולציה בסיסית של תצוגה, וכאן מגיע מושג שנקרא SR-IOV.

SR-IOV (ר"ת של Single Root Input Output Virtualization) היא טכנולוגיה שפותחה ע"י הקבוצה שאחראית על פיתוח PCI, PCIe ועוד (PCI-SIG) ומטרת הטכנולוגיה הזו היא לפתח כרטיסים שמיועדים לשימוש בפתרונות וירטואליזציה.

כרטיס PCIe רגיל, בדרך כלל מיועד לפעילות אחת ולמערכת אחת. קחו לדוגמא כרטיס RAID או HBA, הוא מיועד לשבת ולתת שרותים למערכת אחת שרצה בשרת. אם לדוגמא אתם משתמשים בוירטואליזציה על אותו שרת, ה-OS (ה-ESXI לדוגמא) "יחטוף" את הכרטיס לשימושו האישי, ואתם לא תוכלו להשתמש בכרטיס ה-RAID ישירות במכונה וירטואלית. אנחנו כאן יכולים "לבדל" את כרטיס ה-RAID (כלומר Exclude) מה-ESXI אם לדוגמא נבצע Boot מ-USB או כרטיס SD ונגדיר ב-ESXI לעשות "Passthrough" לכרטיס ה-RAID לפי מספר ה-PCI ID שלו (כפי שניתן לראות כאן) ולאחר ביצוע Reboot לשרת, נוכל לבצע "מיפוי" של כרטיס ה-RAID למכונה וירטואלית אחת. למיפוי הזה יש מגבלות: אנחנו חייבים לתת מראש את כל משאבי הזכרון שאנחנו מגדירים ב-VM, לא ניתן לבצע Live Migration וכמובן – יש כרטיסים שלא ממש "מחבבים" את הרעיון של PCI Passthrough כמו כרטיסי GTX של nVidia (אם כי יש גם לכך פתרון).

עם SR-IOV הדברים שונים.

בכרטיסים המכילים פונקציונאליות SR-IOV (הכרטיסים האלו יכולים לתת את הפעילות הזו רק עם מעבדי Xeon E5 v3 ומעלה ומעבדי AMD EPYC), ישנם 2 חלקים חשובים: PF ו-VF.

ה-PF (כלומר Physical Function) מייצג פונקציונאליות פיזית שהכרטיס יכול לתת ואותה ניתן להגדיר. אם ניקח לדוגמא כרטיסים כמו GRID או Tesla של nVidia, אנחנו יכולים להגדיר כמה זכרון תצוגה יהיה לכל vGPU. מכיוון שיש לנו יכולת להכניס כמה כרטיסים בשרת אחד, יהיו לנו בעצם מספר PF, ואותם נוכל להגדיר כבודדים או כקבוצה עם הפרמטרים הרלוונטיים.

ה-VF הוא בעצם מעין "תת כרטיס PCIe" וירטואלי (Virtual Function) שאותו אי אפשר להגדיר (זהו בעצם "כרטיס טיפש") שאת הפונקציונאליות שלו מממש הכרטיס הפיזי. ברגע שהגדרנו את ה-PF בוירטואליזציה (לכל כרטיס יש כלים והגדרות אבל כולם משתמשים ב-PF, ו-VF), במערכת "יצוצו" כמות של כרטיסים וירטואליים חדשים שנראים כמו כרטיסי PCIe רגילים, ואותם אנחנו ממפים פר VM. ברגע שמיפינו והפעלנו את ה-VM, נצטרך להתקין את הדרייברים היעודיים לאותו כרטיס (במקרה של nVIdia ו-AMD – הדרייברים של ה-vGPU, לא לבלבל בין אלו לבין הדרייברים לוירטואליזציה) ואז נוכל להשתמש בפונקציונאליות החדשה.

בתחום ה-Network, כל יצרני כרטיסי הרשת (אינטל, Mellanox, Solarflare, ואחרים) נותנים פונקציונאליות SR-IOV בכרטיסים שלהם. אם לדוגמא אתם משתמשים בכרטיסי רשת של אינטל, אתם יכולים להסתכל ברשימה הזו ולראות אם יש תמיכת SR-IOV. חשוב לזכור: גם אם כתוב שיש תמיכת SR-IOV, במקרה של אינטל אין תמיכת SR-IOV בכרטיסים עם חיבורי 1 ג'יגהביט, או FCoE ו-SR-IOV.

עד כמה הביצועים שונים בין VNXNET3 ל-SR-IOV של כרטיס רשת? להלן גרף לדוגמא:

הגרף הוא מתוך מסמך  ש-VMWare שחררה בכתובת: http://delivery.acm.org/10.1145/2900000/2892256/p65-xu.pdf

עם כל הדברים הטובים שיש ל-SR-IOV להציע, יש גם כמה מגבלות:

  • נכון להרגע, ב-ESXI אין אפשרות לבצע Live Migration למכונה עם כרטיס וירטואלי ממופה (שזה קצת מוזר, בהתחשב בכך שבלינוקס עם KVM זה דווקא כן אפשרי).
  • אם אתם רוצים "לפוצץ" את המכונה בכרטיסים שיש להם יכולת SR-IOV, תוודאו שלמעבדים יש הרבה ליבות או שתרכשו שרתים עם EPYC, אחרת – תכירו את התקלה הזו. תזכרו שכל VF דורש Interrupt משל עצמו.
  • בחלק מהשרתים תצטרכו לעבור למצב Performance בשביל שפעילות SR-IOV תהיה פעילה (ניסיתי על Dell R740).
  • הגדרתם ל-VM כ-16 ג'יגהבייט זכרון וה-VM משתמש ב-2? הלכו ה-14 ג'יגהבייט זכרון הנוספים (יש להגדיר מראש במכונה להשתמש בכל הזכרון שמוגדר אחרת ה-VF מייצר תקלות), כך שיכול להיות ויהיה צורך לחשב מחדש את כמות מכונות ה-VM פר שרת. כמו כן, משחקי/הגדרות Balooning לא מומלצים על מכונות VM כאלו.

לסיכום: SR-IOV זו טכנולוגיה מעולה כשמעוניינים בביצועים גבוהים של פונקציונאליות מסויימת כמו רשת, GPU ועוד. אם יש לכם שרתים מה-4-5 שנים האחרונות (ויש בהם מעבדי Xeon V3 ומעלה) תצטרכו להפעיל ב-BIOS את ה-SR-IOV ותוכלו להנות מהפונקציונאליות המשופרת ומביצועים גבוהים. יחד עם זאת, ישנם מגבלות שחייבים לקחת מראש, כך שלא מומלץ מחר בבוקר להעביר את כל ל-SR-IOV.

בואו נדבר קצת על IOPS

IOPS, או Input Output operations Per Second – הוא אחד המושגים הכי ערמומיים שנכנסו לשוק הדיסקים והסטורג'. אם אינני טועה, מי שהתחיל עם העניין היתה חברת Sun עם ה-ZFS ששולב ב-Solaris 10. באותו זמן, החלו לצאת ה-SSD הראשונים (קטנים מבחינת כמות אחסון, ויקרים רצח).

עניין ה-IOPS בדיסקים SSD וגם בסטורג' המתהדרים ב-IOPS גבוה – זה שלא תמיד מקבלים מה שהובטח.

לשם כתיבת פוסט זה השתמשתי ב-SSD בתצורת M.2 NVME מסוג Samsung 960 EVO בגודל חצי טרהבייט על מנת לבדוק את הדברים בטרם אני כותב את הפוסט הזה ועל מנת להיות בטוח. הכלים שהשתמשתי במהלך הבדיקות לשם כתיבת פוסט זה: FIO ו-IOMeter.

להלן הנתונים הרלוונטיים מבחינת מפרט מהאתר של סמסונג העולמי (לחצו להגדלה):

על הנייר, ה-SSD הזה אמור לתת ביצועים מעולים! 330,000 IOPS בכתיבה בבלוגים של 4K כשיש 4 עבודות במקביל! נשמע פנטסטי, לא?

אז זהו. שלא. בעזרת שימוש בכלים כמו אלו שציינתי לעיל – אפשר להגיע למספר שציינתי לעיל (למען האמת, קצת יותר – 349,400 לפי הניסוי שלי). העניין הוא, שברגע שכשמייצרים Partition עם גודלי בלוקים שונים (ולא חשוב מה גודל הבלוקים, גם אם אתה מגדיר נכונה את הבלוקים ביחס לקבצים שאתה הולך לאחסן) ומפרמט ל-File system כלשהו ותנסה למדוד עם פרמטר direct=1 עם FIO לדוגמא, תגלה שמספר ה-IOPS צלל בערך במחצית! כלומר אם ננסה לגשת ישירות ולמדוד עם direct על ה-file system שב-SSD – המספרים יהיו הרבה יותר נמוכים. כמובן שאם נשתמש ב-SSD דרך מערכת ההפעלה ללא גישת Direct, המהירות תהיה גבוהה יותר, וזאת מכיוון שמערכת ההפעלה משתמשת בכל מיני דברים כמו Cache, Scheduling וכו' כדי להציג מהירות גבוהה (במיוחד שדברים נעשים ברקע ולא ישירות).

ה-IOPS עצמו נמדד בקטגוריות שונות כמו קריאה אקראית (Random Read), כתיבה אקראית (Random Write), קריאה טורית/רציפה (Sequential Read), כתיבה טורית/רציפה (Sequential Write). את מספר ה-IOPS מכפילים בגודל הנתונים שעוברים פר שניה והתוצאה היא כמה Bytes לשניה מקבלים (את זה נהוג בתוך כלל לחלק למגהבייט לשניה).

נחזור לטבלה של סמסונג המוצגת למעלה. אחד הנתונים שמופיעים שוב ושוב בסוגריים הוא QD, כלומר Queue Depth. בעקרון מדובר בעצם על מנגנון של "תורים", כאשר בכל תור נכנסים משימות לביצוע. ככל שיש יותר תורים לדיסק, כך ניתן לעשות יותר פעולות. בדיסק SSD בחיבור SATA למשל, ישנם 31 תורים. ב-SSD NVME לעומת זאת, עניין התורים הורחב משמעותית ושם יש 65,000 תורים ובכל תור יכולים להיכנס 65,000 עבודות! המספר הזה הוא כמובן רק תיאורתי, ולא מומלץ לנסות להגדיר את ה-Queue Depth מעבר ל-128 (אלא אם אתם ממש עשירים ואתם רוצים לרכוש SSD כמו Samsung 983 ZET, עניין של 2000$ לחצי טרה, ולמעט מקרים מיוחדים, הוא לא יתאים לרוב השימושים. כרטיס זה יודע לתת ביצועים טובים יותר ב-QD של 128 ומעלה).

עוד נקודה שמופיעה בטבלה היא Thread – ו-Thread בעצם מדבר על כמות עבודות במקביל לאותו SSD ולפי הטבלה של סמסונג, המספרים המוצגים הם כשרצים 4 עבודות, וזו אחת הנקודות שכדאי להתמקד עליה: SSD NVME – בין אם ביתי/מקצועי או ל-Enterprise יתן עבודה יותר מהירה כשיש מספר עבודות במקביל. יחד עם זאת, תריצו 100 עבודות כתיבה על הדיסק במקביל ותקבלו SSD זוחל, לא חשוב איזה דגם או מאיזה יצרן.

עוד נקודה שאמנם לא מופיעה בטבלה אך היא חשובה מאוד לביצועים – היא המתזמן במערכת ההפעלה (ה-Scheduler) לאותו ציוד. בלינוקס יש מספק Schedulers וכיום הפצת לינוקס עדכנית מזהה את הדיסק (מכני או SSD, חיבור SATA או NVME) ומתאימה אוטומטית את ה-Scheduler המתאים לדיסק (אפשר כמובן לשנות אם רוצים). ה-Scheduler חשוב מאוד ובחירה שגויה תפגע גם בביצועי ה-IOPS. חשוב לזכור: גם לבקר הדיסקים, ל-HBA וכו' יש הגדרות Queue Depth ואם אתם משתמשים ב-VMWare אתם יכולים לקרוא על כך בהרחבה כאן.

עניין ה-Block Size הוא גם דבר שיכול להשפיע על ה-IOPS, אבל בעקיפין. אם לדוגמא הגדרתי Dataset ב-ZFS בגודל 128 קילובייט ואני כותב קבצים בגודל 2-4 קילובייט, אז לא רק שאני מבזבז מקום, גם הביצועים ירדו. מצד שני, בחלק מהסטורג'ים זה לא כל כך ישפיע בגלל ה-Cache שיש בסטורג' עצמו, כך שזה נושא נתון לויכוח ובכל מקרה מומלץ לחשוב היטב לאיזה גודל בלוקים להגדיר את ה-Volume/Partition/Dataset ובמקרה של ZFS תמיד ניתן לשנות מבלי להרוס דברים.

מכאן נעבור לסטורג', החלק שרבים מתעניינים בו 🙂

כשיצרן סטורג' מוכר לכם פתרון כלשהו, הוא יציין בדרך כלל כמות IOPS מקסימלית. המספר הזה אינו מייצג IOPS של דיסק מסוים במדף או קבוצת דיסקים, אלא מספר שמורכב מהדיסקים, NVRAM (אם יש), זכרון RAM, דיסקים SSD (בחיבורים שונים, תלוי מה הסטורג'), דיסקים מכניים וכו' – כלומר המספר הוא מספר של הפתרון כולו ולא של חלק זה או אחר בפתרון.

במציאות היומיומית, יהיו בהחלט מצבים שיגרמו לכך שלא תקבלו את אותו מספר IOPS, כי זה תלוי בכל מיני גורמים. רק לשם הדוגמא, נניח רכשנו סטורג' כלשהו והיצרן מתחייב ל-50K IOPS והסטורג' הזה יהיה מחובר ל-vSphere שלכם. מה הדברים שישפיעו? יש כל מיני:

  • הגדרות לא נכונות של מערכת ההפעלה ב-VM עם כמות זכרון מופחתת, מה שיכריח את ה-OS להשתמש ב-Swap. ה-Swap יושב ב.. סטורג'.
  • הגדרות Scheduling ב-VM עצמו.
  • העתקה/מיגרציה של קבצים רבים מסטורג' אחר
  • רפליקציות LIVE מתמשכות
  • פעילות שנעשית דרך VAAI (ה-VAAI או VVOL אינם הוקוס פוקוס, להזכירכם).
  • גיבויים (כן, גם ל-CBT יש מחיר, תלוי כמה מכונות VM מגבים)
  • הגדרות בלוקים לא נכונות ב-Volume/Partition.
  • כתיבות של טרהבייטים
  • ועוד ועוד..

לכן, בין אם רוכשים SSD או שרוכשים פתרון סטורג' והיצרן מציין מספרים כלשהו, זה לא אומר שתמיד תקבלו את אותו מספר IOPS. יש דברים רבים שיכולים להאיט את הביצועים ובשביל זה בפתרונות סטורג' וב-vSphere לדוגמא, יש כלים המציינים מה לוקח כמה. יהיו מקרים כמובן שחיפוש הבעיה יזכיר חיפוש מחט בערימת שחט, אבל בשביל זה אתם זכאים לתמיכה.

ועוד נקודה: IOPS גבוה אינו נחלה של סטורג' ממותג זה או אחר בלבד. כל אחד יכול לבנות לעצמו פתרון סטורג' המורכב מדיסקים מכניים, SSD, זכרון וכו'. העניין הוא שצריך לחקור דברים בצורה רצינית לפני רכישת הציוד ולאחר מכן לבצע לא מעט הגדרות על מנת לקבל את הביצועים הגבוהים, כך שגם אם אין ברשותכם את התקציב הגדול לרכוש סטורג' מותג יוקרתי – אפשר למצוא פתרונות במחיר יותר נמוך.

לסיכום – IOPS כמושג עצמו הוא דבר די קבוע ויש מאמר מעולה עליו ב-Wikipedia למי שמעוניין לקרוא, אבל IOPS הוא דבר די חמקמק ולעיתים מאכזב כשצריכים ביצועים מאוד גבוהים מ-SSD כלשהו, היצרן מבטיח דברים אך במציאות המספרים הרבה יותר נמוכים, וכנ"ל גם בעולם הסטורג' – היצרן מבטיח מספר שהוא מקסימום IOPS (וצריך אגב לבדוק מה המספר או ליתר דיוק מה מספרי ה-IOPS בקריאה רציפה ואקראית, כתיבה רציפה ואקראית), אך יש לא מעט דברים שאתם כצרכן סופי מגדירים – שיכולים לגרום למספרים לרדת.

קצת על אחסון נתונים ונקודות חשובות לפני החלטה

הערה: בפוסט זה אני רוצה להתייחס לנקודות שלדעתי חשובות לפני שמחליטים לקנות או לבנות סטורג'. פוסט זה אינו בא להמליץ על יצרן מסוים, דיסקים מסויימים וכו'. הפוסט נכתב כחומר למחשבה בלבד.

כל עסק נתקל מתישהו בבעיה ידועה: צריכים סטורג'. בין אם כסטורג' נוסף או סטורג' יעודי ראשי לפרודקשן או שפשוט צריך להחליף סטורג' פרודקשן ישן לסטורג' חדש. המכנה המשותף לכולם? זה כאב ראש לא קטן.

אחד הדברים המעניינים שניתן לראות קשור לגודל החברה המעוניינת בפתרון: ככל שהחברה יותר גדולה והיא יותר "Enterprise" – היא יותר ויותר "נצמדת לפרוטוקול" – הם ירצו פתרון של יצרן ברזלים מסוים ופחות יסכימו לפתרון SDS (כלומר Software Defined Stroage) עצמאי – אלא אם יצרן הברזלים ימליץ על הפתרון. הם יעדיפו תמיכה במקום אחד (שרתים, סטורג'), מקסימום 2 (שרתים של יצרן אחד, סטורג' של יצרן מאוד ידוע) אבל לא מעבר לכך. ככל שהעסק יותר קטן – הדברים יהיו הפוכים (בכל זאת, צריך לחסוך). החריגה מהכללים אצל החברות הגדולות, אגב, מגיעה כשצריך אחסון של מעל 1 פטהבייט – פתאום הח"מ מקבל טלפונים בדיוק מאותם אנשים שהתנגדו לתוכן שכתבתי על סטורג' בבלוג זה.

לפני שאמשיך – הערה קטנה: תודות לחברות שונות (CRG, ווסטרן-דיגיטל, סופר-מיקרו ואחרות) השאלתי ציוד כדי להעביד אותו בפרך (Stress Testing) למשך חודש או חודשיים, 24/7 עם תעבורה רציפה מקסימלית (תקשורת/דיסקים, מעבדים, מאווררים, תלוי בטסטים המתבקשים) בהתאם לסטנדרטים של IEEE וארגונים אחרים על מנת לבדוק לחברות וארגונים שונים אם המפרט שהם מבקשים יכול לעמוד בעומסים שונים. כך שהדברים שיכתבו כאן – נוסו.

(בתמונה למעלה: לקוח שרצה לבדוק LACP של 12 פורטים עם תעבורת נתונים של 16 פטהבייט. המבחן עלה לו יותר מסוויצ' 10 ג'יגהביט Low End, אבל – הלקוח דורש ומשלם, אני לא אומר "לא".)

אז בין אם אתה עסק קטן של סטארט אפ של 2 וחצי אנשים שממש לא מעוניין להתקרב לעננים ובין אם אתם חברה גדולה – יהיו פה בפוסט כמה נקודות שאולי תכירו ואולי לא, נקודות שאולי תסכימו ואולי לא.

הבה נתחיל.

אם אתם כעסק או חברה רוצים פתרון אחסון, חשוב לרכז את הנקודות הבאות שהן הכי חשובות:

  • כמה אחסון נטו אתם צריכים? עזבו חישובים של RAID כזה או אחר, דחיסה, dedup ושאר ירקות. 2 האחרונים הם נחמדים, אך לא תמיד יתנו לכם את מה שאתם מבקשים (זה תלוי בתכנים).
  • כמה לקוחות (clients) הולכים להשתמש בזה? יש הבדל ענק בין אחסון שמשמש לכמה עשרות/מאות מכונות וירטואליות, כמה אלפי משתמשים פיזיים שמשתמשים באחסון כ-File Server או עשרות/מאות אלפי משתמשים דרך האינטרנט.
  • האם החיבור בין האחסון למכונות אחרות ישתמש בתקשורת מהירה? (FC במהירות 8/16 ג'יגהביט, תקשורת 10 ג'יגהביט קואקסיאלית, TwinAX, סיב, Infiniband וכו') והאם אתה צריך ציוד חדש לחבר את הכל ביחד (גם בצד של השרתים, גם מתגים, חיבור לסטורג' עצמו וכו')
  • אחריות, SLA ושאר נושאים פרוצדורליים.
  • והכי חשוב – יחס הקריאה/כתיבה וסוג התוכן.
  • דיסקים SSD שישמשו כ-Cache, שימוש ב-Cache כ-Tiering וכו'.
  • פתרונות של Synology או QNAP.
  • הרחבת אחסון, זכרון.

להלן הנקודות בפירוט:

  • אחסון נטו: נניח ואתה צריך 40 טרהבייט אחסון נטו. אם נשתמש במחשבון הזה תוכלו לראות ש-5 דיסקים של 10 טרהבייט יתנו לנו 40 טרהבייט אחסון נטו עם שרידות של דיסק אחד (כלומר RAID-5). מצד אחד זה יכול "לסגור פינות" שיש לנו כמות אחסון מספקת, וגם שרידות. הבעיה המרכזית: מהירות כתיבת נתונים ושליפתם. אין לנו שום האצה בכתיבת הנתונים, יש לנו האצה בקריאת הנתונים (שזה אידיאלי אולי לארכיבאות לדוגמא). בשביל לקבל האצה פי 4 בכתיבה ופי 8 (בהשוואה לקריאה/כתיבה מדיסק בודד) נצטרך 8 דיסקים של 10 טרהבייט ב-RAID-10. אם אנחנו רוצים מהירות קריאה/כתיבה יותר גבוהה בהרבה (X10 בכתיבה, X20 בקריאה) נצטרך לעבור מדיסקים של 10 טרה לדיסקים של 4 טרה בייט ולרכוש 20 כאלו (תגידו "היי" למארזי 4U). ככל שנבחר דיסקים יותר גדולים, כמות ההאצה שהמערכת תתן – היא יותר קטנה (לדוגמא: 10 דיסקים של 8 טרהבייט יתנו X5 בכתיבה, X10 בקריאה – הדוגמאות הם ב-RAID-10). טעות נפוצה, אגב, היא שימוש ב-RAID-5: הגדרות RAID-5 נותנת אפס האצה בכתיבה לאחסון.
  • לקוחות שהולכים להשתמש בסטורג'. אם מדובר על שרת קבצים לדוגמא, עניין המהירות הוא יחסית די שולי כי כולם משתמשים בתקשורת 1 ג'יגהביט שברוב הזמן מנוצלת חלקית, ואם מישהו יחכה עוד חצי שניה לשמירת קובץ האקסל שלו, השמיים לא יפלו.
    לעומת זאת – מכונות וירטואליות זה סיפור אחר לגמרי. פרוטקול כמו iSCSI הוא פרוטוקול "מפונק" ומערכת כמו VMWare לדוגמא דורשת אישור מהסטורג' על כל קבוצת נתונים שנרשמת, כך שאם אין איזה מנגנון ש"יאמר" ל-VMWare "קיבלתי, מאשר" בכל פעם ובאופן מהיר – המכונות הוירטואליות פשוט יזחלו בכל כתיבה. כיום ברוב פתרונות הסטורג' (סגורים ופתוחים) יש מנגנון שמטפל בכך, אבל אם תרימו מכונת לינוקס עם MDADM ל-RAID, זה לא יתן פתרון (אפשר לעקוף זאת על ידי ביטול ה-sync ב-ZFS לדוגמא, אבל זה מסוכן, במיוחד אם אין UPS למכונה).
    לכן, כשמדובר בסטורג' שיטפל בכל הקשור לאחסון מכונות וירטואליות, חשוב לבדוק שהסטורג' תומך ב-Sync On write, reclaim space, תמיכה ב-VAAI, VVOL ואחרים.
  • חיבור בין הסטורג' למכונות אחרת. הנה נקודה שרבים יתווכחו עליה מתוך איזה נסיון שיש להם, מתוך אמונות, מתוך שמועות, אך כמו שכתבתי למעלה – הנקודות נוסו על ידי הח"מ בתנאי Extreme.
    חיבורי ה-FC היו מעולים לזמנים שהתקשורת נחושת היתה במהירות 1 ג'יגהביט וחיבורי 10 ג'יגהביט היו יקרים מאוד. כיום, לעומת זאת, ישנם 5 אפשרויות פופולריות:

    • CAT6/CAT-6E – חיבורי נחושת של 10 ג'יגהביט, עובדים מעולה ואם רוצים, אפשר לעבוד עם LACP (או Bridge) בצוותים של 2 חיבורים לדוגמא לקבל מהירות יותר גבוהה. היתרון: עלות זולה יותר של כבלים וסוויצ'ים.
    • +SFP עם TwinAx (נקרא גם DAC) – עובד מעולה למרחקים קצרים (עד 5 מטר). חשוב לשים לב שהחיבורים יהיו מאותו מותג של הסוויצ' (בסוויצ'ים 10 ג'יגהביט בקצה הנמוך זה לא רלוונטי, הם מתעלמים מה-Branding Tag).
    • +SFP עם סיבים אופטיים – את זה כולם ימליצו. לא חוכמה 🙂
    • +QSFP – כמו ה-+SFP רק למהירות 40 ג'יגהביט. מדובר בחיבור פיזי גדול יותר כך שהוא אינו תואם אחורה. קיים גם כגירסת DAC/TwinAX וגם כחיבור עצמאי שאליו מחברים סיב אופטי.
  • אחריות, SLA וכו' – כל יצרניות השרתים מוכרות כיום פתרונות סטורג' (ברזלים יעודיים או תוכנה לשימוש בשרתים עצמם) משלהם, אך יחד עם זאת הן גם "מכשירות" (Certified) תוכנות אחרות, ובדרך כלל ביקור באתר יצרן תוכנת הסטורג' יראה את הלוגואים של היצרנים שנתנו "הכשרה" לתוכנת הסטורג', כלומר אם תפנו לתמיכת יצרן השרתים, אף אחד לא יעקם את האף מדוע אתם משתמשים בתוכנת סטורג' X. בחלק מהמקרים (תלוי בחוזה התמיכה) אולי יסייעו לכם עם תוכנת הסטורג' צד ג' או יפנו את בקשת התמיכה ליצרן התוכנה (במקרים בהם יצרן השרתים [כמו HPE] מכר לכם חוזה תמיכה על כל הציוד והתוכנות שברשותכם).
  • SSD, Caching: בכל סטורג' המשלב דיסקים מכניים ודיסקים SSD – המערכת תורכב מ"שכבות" (או במושג המקצועי: Tiering), כאשר השכבה המהירה מורכבת מהדיסקים SSD והשכבה האיטית יותר מדיסקים מכניים (SAS או SATA). ישנם כמובן סוגי סטורג' שונים שבהם יש עוד שכבות כמו מדף זכרון מגובה סוללות, NVRAM, או שכבות של דיסקים מכניים מהירים ובשכבה מתחת דיסקים SATA במהירות 7200 RPM.
    בכל המקרים הללו, ה-SSD נועד "להחביא" את הדברים הקשורים לכתיבה. הוא מקבל את ה-DATA ולאחר מכן ה-DATA מופץ לשכבות היותר איטיות, והוא גם מאחסן נתונים שנקראים תדיר (נניח יש לך 10 מכונות לינוקס, כולן רפליקציות מלאות או משורשרות – רוב הסיכויים שה-DATA יקרא מה-SSD). ה-DATA עצמו לא נכתב ישר אל הדיסקים המכניים, אבל הסטורג' מציג את הדברים כאלו שהנתונים כן נכתבו למכניים, והסטורג' ברקע עושה זאת.
    במערכות יקרות יותר (מילת קסם: AFA או All Flash Array) ישנם גם שכבות אם כי טיפה שונות: רוב הדיסקים הם Read Intense וחלק קטן מהם Write Intense או Mixed Intense ולפעמים יש שימוש ב-NVRAM או בזכרון מגובה סוללה (נדיר). במערכות הסופר-סופר-יקרות, מכניסים גם Optane, גם כרטיסי FPGA ודברים נוספים כדי להאיץ את הכל (ועוברים בדרך לפרוטוקול ה-RDMA הוותיק) – כמו במערכות NVMEoF לדוגמא.
  • פתרונות של Synology או QNAP: אלו פתרונות שאני יכול להמליץ עליהם בלב שלם כפתרונות לשמירה/קריאה של מידע, פחות למכונות וירטואליות (אם כי ל-LAB קטן הם בהחלט יכולים להספיק). כיום בכל QNAP או Synology ניתן להוסיף דיסק SSD לקבלת Cache בסיסי, אבל אל תנסו להכניס לשם SSD מסוג Optane  לדוגמא (כמו שינוי QD) – בשביל זה יש צורך לשנות כמה וכמה דברים בלינוקס ואין במכשירים הללו לא את הספריות ולא את האפשרויות לשנות פרמטרים.
  • הרחבת אחסון, זכרון: בכל מה שקשור לזכרון, רוב הסטורג'ים שמבוססים לינוקס/BSD/סולאריס ו/או ZFS ישתמשו בזכרון כ"מאיץ ראשי" לקבלת הנתונים ולשחרר את צוואר הבקבוק, כך שאם אתם יכולים להשקיע ברכישת RAM – מה טוב.
    לגבי הרחבת האחסון עצמו: בסטורג' סגור הפתרון תמיד יגיע עם "מדפים" לאחסון הדיסקים. בסטורג' פתוח לעומת זאת, חשוב לבדוק שיש חיבור מאחורה המאפשר לחבר JBOD אחד או יותר על מנת להוסיף קופסת JBOD או יותר עם דיסקים ומומלץ לבדוק שהחיבור הוא SAS-3 (נקרא גם HD MINI-SAS או בשמו המקצועי: SFF-8644). לפני שנתיים שוחרר סטנדרט שנקרא SAS-24G אך אני לא ממליץ לרכוש אותו הואיל ודיסקים קשיחים עתידיים (כמו אלו עם 2 מנועים שאמורים לצאת בשנה הקרובה/שנה הבאה) עוברים להשתמש בחיבור NVME. ה-24G פיספס את הרכבת.

לסיכום: אלו נקודות כלליות שלעניות דעתי כדאי לקחת אותן בחשבון לפני שרוכשים סטורג'. אתם יכולים להדפיס או להוריד כ-PDF את הפוסט הזה (לינקים בהתחלת הפוסט מצד שמאל). חשוב לשים לב לדברים ובמיוחד לא לרוץ על דברים שאין לכם צורך בהם (אך איש המכירות ישמח אם תרכשו). אין לכם מושג או ידע בנושא? קחו יעוץ עצמאי בלתי תלוי, והנקודה הכי חשובה – תחשבו גם על מחר, שנה הבאה ובעוד שלוש שנים אם הרכישה תספק פחות או יותר את הצרכים.

הטעות הנפוצה לגבי מהירות המעבד

אחת השאלות שאני קורא בפורומים שונים קשורה למהירות מעבדים של שרתים. לא מעט אנשים מגיעים עם ידע כלשהו לגבי מעבדים בדסקטופ ומצפים שמה שכתוב על המעבד – יתרחש במציאות. שאלה נפוצה: איך אני יכול לגרום למעבדי X שיש בשרתים שלי לרוץ במהירות המקסימלית הרשמית.

התשובה הפשוטה: אתה לא ממש יכול לעשות זאת, לפחות לא מה שאתה חושב שיצא.

ברשותכם, אסביר.

אינטל בעבר הרחוק היתה נוטה לפרסם את ביצועי מעבדי הדסקטופ במהירות מקסימלית ובמהירות שכל הליבות עמוסות. מהירות מקסימלית היא של ליבה אחת שרצה במהירות מקסימלית. במהלך השנים אינטל ירדה מפרסום מהירות כלל הליבות שהן עמוסות לחלוטין ועד היום היא מפרסמת מספר – ומספר זה הוא מהירות הטורבו.

ב-Xeon לעומת זאת, אינטל עדיין ממשיכה לפרסם את המהירות – ליבה אחת עמוסה 100% ומספרים נוספים לגבי 2 ליבות, 4 ליבות – שהם עמוסים, מה המהירות שלהם. להלן דוגמא מטבלת המהירות של מעבדי Xeon החדשים שיצאו החודש:

כפי שאתם יכולים לראות, מעבד שמציג מהירות מקסימלית של 4 ג'יגהרץ, המהירות הזו יכולה להתרחש רק כשליבה אחת עמוסה וכל שאר הליבות נמצאים בעומס בינוני ומטה. כשכל הליבות עמוסות – מגיעים למהירות יותר נמוכות, לפעמים גם ל-2.7 ג'יגהרץ במעבדים שמפורסמים שמגיעים ל-4 ג'יגהרץ.

במכונות דסקטופ/תחנות עבודה/שרתי Tower אפשר להשתמש בפתרונות צינון-מעגל-סגור (Closed Loop Cooler או CLC), ששם יש רדיאטור, 2 או 3 מאווררים חזקים, ותעבורת מים שעוברת בצינורות ומגיעה לחלק שנמצא ישירות על המעבד, בין החומר הטרמי על המעבד לחלק שסופג את החום ומצנן את המעבד. שום פתרון שמבוסס על קירור אוויר אינו יעיל כמו CLC או כל פתרון קירור נוזלי.

וכך, לא חשוב איזה שרת 1U או 2U יש לך, גם אם המאווררים פעילים ב-100% ולא חשוב כמה CFM הם יכולים לדחוף, גם האווררים עם 2 מדחפים – הקירור עצמו אינו יעיל מספיק לקרר מעבד כשכל הליבות עמוסות לחלוטין ולפיכך מהירות המעבד תרד. אגב – המספרים בטבלה למעלה שאינטל מפרסמים? יהיה אולי ניתן להגיע אליהם בשרת 3U ומעלה כשהמאווררים מוחלפים ב-CLC. מנסיון.

לכן, אם המעבדים שלך מתוייגים לעבוד עד מהירות מקסימלית של 4 ג'יגהרץ – תזכור שאתה לא תקבל 4 ג'יגהרץ, ולא חשוב מה תגדיר ב-BIOS (בין כה אי אפשר לעשות Overclocking – הכל חסום ב-BIOS ומעבדי Xeon נעולים ל-Overclocking). אם אתה מחפש ביצועים יותר גבוהים לאפליקציות מסוימות, עליך לבצע 2 דברים:

  • לוודא שהאפליקציה שלך רצה ותומכת ב-Multi Threading
  • להצמיד למכונה הוירטואלית שמריצה את האפליקציה – עוד ליבות, עדיף במתודת CPU Pinning
  • הגדרות Governance ב-CPU ל-Performance ועוד.

לסיכום: אל תאמינו למספר המופיע כמהירות מקסימלית על המעבד. המספר מתייחס אך ורק לליבה אחת ואם כל הליבות עמוסות, מהירות השעון תהיה הרבה יותר נמוכה מהמספר שמצוין על המעבד. אפשר להצמיד ליבות נוספות, אפשר להגדיר ולשנות הגדרות במערכת ההפעלה על מנת לתת ביצועים יותר טובים.

יותר ליבות בפחות כסף

במשך שנים רבות אינטל משתמשת ב"טריק" פשוט כדי למכור כמה שיותר מעבדים – כשזה מגיע לשרתים. כל שרת מבחינה טכנית יכול לעבוד עם מעבד אחד, אבל אז יש לך גישה רק למחצית מהמשאבים שהשרת יכול לתת. רוצה להשתמש בתושבות ה-PCI? אתה יכול רק בחצי מהם. רוצה להכניס הרבה זכרון לשרת וירטואליזציה? לא תוכל לנצל את כל היתרונות של השרת – אלא אם תקנה כמובן מעבד שני.

וכך יצא מצב שרוב החברות בארץ קונות שרתים כשכמות הליבות הרצויה מבחינתם – מחולקת ל-2. רוצים 16 ליבות? שלמו על 2 מעבדים של 8 ליבות, לדוגמא. אינטל הרוויחה מזה יפה מאוד.

ואז AMD הוציאה את EPYC עם הצעה מאוד מפתה (שרבים לא מודעים לה): קנה שרתים מהיצרנים מוכרים עם המעבדים שלנו, ותחסוך 40-60% בהשוואה למעבד עם כמות זהה של ליבות – של אינטל. אבל כאן זה לא נגמר: AMD הוציאה במקביל משפחה נוספת של מעבדים לשרתים עם האות P – ועם מעבדים אלו אתה משלם מחצית בהשוואה למעבד זהה ללא האות P.

אז אם לדוגמא אתם רוצים לרכוש מעבד Xeon Scalable 8180 עם 28 ליבות (מחיר – $17600 בשוק), מעבד EPYC 7551P עם 32 ליבות – עולה 2232$. אמרתי רבע מחיר? זה יותר כמו תשיעית מהמחיר. המחירים כמובן שונים כשקונים את השרת עם כל החלקים כבר מורכבים מיצרן השרתים המועדף עליכם, אבל עדיין – יש הבדל ניכר במחיר גם שם.

ההבדל בין השתיים? מעבד עם האות P יכול לעבוד כמעבד יחיד בלבד, גם אם תכניס אותו ללוח אם עם 2 תושבות למעבדים. בניגוד לאינטל, עם מעבד EPYC אתה מקבל גישה לכל המשאבים גם עם מעבד יחיד.

ב-HPE לדוגמא בנו שרת, ה-DL 325 Gen 10 מבוסס מעבד יחיד, ויש להם כמה דברים לאמר בנידון:

תנחשו מי מאוד התלהב מהרעיון? המתחרים. אינטל.

אינטל תוציא בקרוב 3 מעבדים חדשים בסידרת ה-Cascade Lake שלהם, וכמו ש-AMD השתמשה באות P לבדל את המעבדים, אינטל תשתמש באות U. בשאר הדברים אינטל די העתיקה את AMD – רוצה לדוגמא שרת עם 20 ליבות סה"כ? רכוש את ה-Xeon Gold 6210U, תקבל 20 ליבות במחצית המחיר בהשוואה ל-2 מעבדים של 10 ליבות כל אחד. המעבדים הנוספים שיהיו הם: Gold 6212U (עם 24 ליבות) ו-Gold 6209U עם 20 ליבות במהירות נמוכה ב-400 מגהרץ בהשוואה ל-Gold 6210U.

חשוב לזכור: אם אתם רוצים להנות מהמחיר המופחת, אתם חייבים לציין בפני נציג המכירות של היבואן/מפיץ שמדובר במעבדים דגמי U מכיוון שמדובר בשרתים מדגמים עם מספרים שונים (אחרי הכל, צריך לוח שונה). כרגע רק ל-Supermicro יש לוחות (ושרת) כזה, שאר המתחרים יצאו עם דגמים כאלו בסביבות יוני-יולי.

לסיכום: כבר בקרוב יהיה ניתן לחסוך במחיר עלות שרתים אם תבחרו במעבדי סידרת U, אם אתם מתעקשים לעבוד עם המעבדים של אינטל. אני מאמין שאינטל תוציא עוד דגמי U שמתאימים יותר לאלו שמעוניינים בכמות של 8 או 16 ליבות (כמות כוללת).

מתי כדאי לרכוש את ה-Optane SSD של אינטל?

כל איש IT שמבין משהו בדיסקים, מכיר בוודאי את הכלל הפשוט הבא: דיסקים מכניים מיועדים  לאחסון גדול, דיסקים SSD מיועדים לביצועים. שילוב של השניים נותן בעצם ביצועים די טובים, והקונפיגרציה הזו "מאיצה" את הקריאה/כתיבה לדיסקים. עד כאן הכל טוב ויפה. יצרני ה-SSD כמובן מנסים להתחרות בגיזרת הגודל SSD מול הדיסקים המכניים, אך המחיר שלהם מרתיע. לפני מספר שבועות קיבלתי דיסק SSD מסוג Nytro של Seagate לבדיקה, דיסק SSD בגודל 15.3 טרהבייט. מנמ"ר שקפץ לביקור אליי ראה את הביצועים והתרשם (לעניות דעתי הביצועים אינם משהו הואיל וזה דיסק שמתחבר ב-SAS ולא U.2) – אך כשהראתי לו את המחיר של הדיסק (6,500 דולר – בחו"ל) – ההתלהבות ירדה במהירות.

כל פתרון אחסון, בין אם מדובר באחסון סגור או אחסון בניה עצמית – עובד פחות או יותר באותה שיטה של "פירמידה" – מהאמצעי הכי מהיר לאמצעי הכי איטי: זכרון RAM כ-Cache ראשוני (או במקרים של אחסון קנייני כמו EMC לדוגמא – NVRAM), מתחתיו SSD שבנויים משבבי NAND SLC או MLC, ובשכבה האחרונה – הדיסקים המכניים. כל שלב ב"פירמידה" מאיץ בעצם את החלק מתחתיו (כשמסתכלים מלמעלה כלפי מטה).

הפירמידה הזו בשנתיים האחרונות "התרחבה" מעט כשאינטל וסמסונג הוציאו את ה-SSD שלהם (Optane בדגמים שציינתי לעיל) שמיועדים יותר ל-Cache. אינטל הוציאה את ה-900/905P לשוק הסמי-מקצועי ואת ה-DC P4800X לשוק ה-Enterprise ואילו סמסונג הוציאה 2 דגמים תחת המותג Z-NAND. הפתרונות הללו יושבים בין ה-RAM (או ה-NVRAM) של פתרון האחסון, לבין ה-SSD מכיוון שהם הרבה יותר מהירים מ-SSD אך אינם מגיעים למהירות של RAM. היתרון ב-Optane בדגמים לעיל הוא שהאחסון מתאים לרוב העומסים של Enterprise או בשימוש מקצועי (תיכף ארחיב), ואילו היתרון של Z-NAND מגיע כשצריכים מידע במהירות מאוד גבוהה (מ-100 ג'יגהביט ומעלה) או ב-Queue Depth מעל 128.

נשאלת השאלה: האם כדאי לרכוש בעצם את ה-Optane DC לצורך סטורג' כתחליף ל-SSD שרוכשים לשרתים (Read Intense/Mixed Intense/Write Intense)?

כדי להחליט אם לרכוש, צריכים להכיר את הטכנולוגיה. ה-Optane DC (ומשפחת ה-900) אינם מכילים שבבי NAND כמו כל דיסק SSD אחר. הם מכילים שבבי אחסון אחרים שאינטל מתעקשת לא לגלות מה יש בתוכם ואינטל קוראת להם 3D XPoint. ב-SSD הללו כל הכללים של SSD רגיל עפים מהחלון. אין צורך ב-Over Provisioning, אין צורך ב-TRIM, ב-SSD אין זכרון שמשמש כ-Cache עד שה-DATA יכתב לשבבים, ומבחינת DWPD (כלומר כמות הפעמים שמותר לכתוב על כל הדיסק ביום) – אינטל מציינת את המספר כ-30 בגירסת ה-P4800X (אני קיבלתי דיסק כזה ל-Torture testing וגם אחרי שכתבתי על כולו 50 פעם בחצי יום – הוא עדיין עבד מעולה. הצעקות שקיבלתי מהנציג באינטל – זה סיפור אחר 🙂 ). מבחינת ביצועי קריאה כתיבה – הוא עוקף את כל מה שיש בשוק (למעט ב-Queue Depth סופר גבוה – שם Z-NAND עוקף אותו). ככלל – היתרון הגדול של Optane DC זה ה-Latency המאוד נמוך שלו בהשוואה למתחרים.

הבעיה המרכזית קשורה למחיר מול ביצועים. שאל את עצמך – האם חברתכם מוכנה לשלם 3000$ על דיסק בודד בגודל 750 ג'יגהבייט? נניח שאנחנו מקימים מערכת וירטואליזציה מבוססת HCI עם VSAN. אנחנו צריכים לכל הפחות 3 דיסקים – 2 איטיים והשלישי מהיר. נאמר ש-2 ה"איטיים" יהיו SSD מבוססי Read Intense והמהיר יהיה Optane DC. יוצא מכך שרק על השלישיה הזו נוציא כמעט 4000$. לא דיברנו על רשיונות, על החומרה הנוספת בשרת, על דיסקים נוספים וכו'. מישהו שפוי ירצה לשלם מחיר כזה?

אישית, כשאני מקים פתרון סטורג' עבור לקוח – אחד הדרישות הראשונות שלי זה דיסק Optane 900P (ואם זה ל-Enterprise – אז DC P4800X) בגלל ה-Latency הנמוך. דיסק כזה משמש אותי אך ורק ל-Caching כשאני צריך לכתוב/לקרוא נתונים ממכונות/אל מכונות אחרות, כאשר החיבוריות היא לפחות 10 ג'יגהביט. במקומות אחרים, כשיש צורך ב-DB לפרודקשן שאמור לתת ביצועים מאוד גבוהים – אותו Optane DC מתאים כ-Cache בלבד, במיוחד אם מדובר ב-In memory Database, ואפילו שרת MySQL/MariaDB יכול לתת ביצועים גבוהים בהרבה בהשוואה לדיסקים SSD אחרים, אבל במקומות אחרים ה-Optane לא יתן לי הרבה בהשוואה למתחרים ופשוט לא יהיה שווה את הכסף.

אם כן חושבים לרכוש את הציוד הזה, חשוב לזכור איזו גירסה לרכוש מיצרן השרתים: AIC (מדובר בכרטיס PCIe) או U.2 (שנכנס מקדימה). בשרתים מודרניים כמו R740, DL380 וכו' לא מומלץ לרכוש מספר דיסקים כאלו להכנסה מקדימה, הואיל והקירור/איוורור אינו מספק (כן, ה-Optane דורש יותר, לכן הוא בין היחידים שכוללים צלעות קירור, לא שזה עוזר הרבה..), ועדיף לרכוש את גירסת ה-AIC. אגב, ה-Endurance של זה כזה גבוה שלעניות דעתי RAID מיותר. אתם לא תקבלו מהירות קריאה כפולה/מהירות כתיבה כפולה (בשביל זה תצטרכו לעשות Overclock לזכרון ולמעבד – דבר בלתי אפשרי במעבדי Xeon).

לסיכום: Optane 900p/DC P4800X הם דיסקים SSD בתצורה שונה, חיה אחרת שהכללים הרגילים שחלים על SSD לא חלים עליהם. הם נותנים ביצועים מטורפים, אך יחד עם זאת, הדיסקים הללו לא בנויים להחליף אחסון של SSD רגיל/מעורב. הם יותר מתאימים ל-Cache או כל דבר אחר שצריך Latency מאוד נמוך, כך שהם מתאימים רק לצרכים ספציפיים. אם יש לך צרכים כאלו, אז הדיסקים הללו יכולים לשמש כפתרון מעולה.

ההכרזה של אינטל על חומרה חדשה

אינטל לאחרונה הכריזה על שורת מוצרים חדשים – משפחת מעבדי ה-Xeon Cascade Lake שמהווים שדרוג למשפחה הנוכחית, Xeon Scalable. אלו שרוכשים שרתים מ-Dell יוכלו להתחיל לרכוש את הדור הבא של השרתים (סידרת ה-R650,750 וכו') בשבועיים הקרובים (לפחות בחו"ל). חברת HPE עוד לא הכריזה על תאריך השקה וגם לא לנובו. בסיסקו הולכים להוציא את המשפחה החדשה בערך בעוד חודש וחצי. בהשוואה למעבדים הנוכחיים, המעבדים החדשים יהיו קצת יותר מהירים אך באותו מחיר כמו הקיימים, וניתן יהיה (לאחר עדכון BIOS) להחליף את המעבדים הנוכחיים במעבדים החדשים. פוסט יותר מפורט על המעבדים החדשים (כולל רשימת המעבדים) – יופיע פה בבלוג בקרוב.

אינטל גם הכריזה על כמה דברים שנראים במבט ראשון מלהיבים ומעניינים, אולם אני ממליץ שלא לרכוש אותם, ובחלק מהמקרים אני ממליץ לחכות ל"גירסה 2.0".

נתחיל בדיסק ה-SSD החדש של אינטל, ה-DC D4800X (תבדילו בינו ל-P4800X). ה-D בשם המוצר מסמן Dual Port. זהו SSD בחיבור NVME כפול. בשביל מה צריך כפול? כדי לקבל שרידות כמובן!…

אממה .. מישהו שכח או התעלם מכלל פשוט שקיים בכל PC, החל מלאפטופ ועד שרת עצבני עם 8 מעבדים: כשיש לך תקלה בחיבור PCIe, המערכת פשוט תקפא או תקרוס. לגמרי. נסיון לבצע כיבוי/הפעלה מחדש לא יצליח לעבור את ה-POST. (בעקרון, כשמפעילים את המכונה, לאחר שהמעבד הופעל וה-BIOS נכנס לשליטה, הוא מריץ את המיקרוקוד שבתוכו, הוא מתחיל לאפס את תושבות וציודי ה-PCIe. כשהוא לא מצליח – תופיע שגיאה שלא תאפשר המשך הפעלת המכנה). במילים אחרות – זה ציוד מעולה .. אם יש לכם Mainframe של IBM, שם אפשר להחליף כמעט את כל הציוד שהמכונה פעילה (וניתן להפעיל/לכבות תושבות PCIe בזמן ריצה) – אבל לא כל כך רלוונטי בשרתים.

מכאן – נעבור ל-Optane DC.

למי שלא מכיר – Optane DC זו גירסת SSD שאינה מתחברת לתושבת PCIe אלא יושבת בתוך תושבות הזכרון של השרת. בתמונה משמאל תוכלו לראות אותם כ"מקלות זכרון" (עם המדבקות, כלומר 3 מקלות Optane DC ו-3 מקלות זכרון DDR4 ECC). כל מקל Optane DC מגיע ב-3 גדלים – 128, 256 או 512 ג'יגהבייט אחסון! (המחירים, אגב, לאלו שרוצים לדעת – ואלו לא מחירים סופיים: 893, 2461 דולר וה-512 ג'יגהבייט עדיין לא יצא). אלו אינם מקלות זכרון, כך שאם יש לך מול מעבד כ-256 ג'יגה זכרון והכנסת מקל Optane DC של 256 ג'יגהבייט, לא יהיה לך זכרון של כחצי טרה, אלא 256 ג'יגה זכרון ו-256 ג'יגה של אחסון מהיר.

בכנס Ignite האחרון, מיקרוסופט הדגימה איך ה-Optane DC עוזר בסביבת HCI שמורכבת מ-Hyper-V, Storage spaces direct וכו'. להלן הוידאו:

שימו לב למשהו אחד חשוב שקצת פחות מודגש בוידאו: כל ה-Optane DC שבשרתים בהדגמה משומש ל-Cache בלבד ולא כ-Storage! במילים אחרות, גם אם תכניס טרהבייט של Optane DC בשרת, עדיין תצטרך Storage כלשהו, ולכן השימוש של Optane DC יותר מתאים כ-Cache ל-DB או למכונות וירטואליות. ניתן לראות את הדגש הזה גם במסמך הזה שהוציאה VMWare שמתייחסת ל-Optane DC ולגירסה עתידית של vSphere.

בלינוקס יש תמיכה ל-Optane DC ובקרוב תהיה גם תמיכה לשימוש ב-Optane DC כ"זכרון". הפצות רד האט 8, SLE 15 ואחרות כבר תומכות ב-Optane DC וכל מה שצריך זה שאפליקציות יתמכו בכך, וזה יקרה ברגע שהטכנולוגיה תהיה נפוצה יותר.

בקיצור – טכנולוגיה מעניינת (אם כי יש לסמסונג המתחרה מענה "בשרוול" שנותן ביצועים בעומסים הרבה יותר גבוהים, זה בסידרת ה-Z-NAND), אבל יקח זמן עד שהיא תיכנס בצורה מסודרת לשימוש על ידי כל מיני אפליקציות ופלטפורמות. הדבר שהכי מעכב כרגע את הדברים – זה הצורך ברכישת שרתים חדשים על מנת להשתמש בטכנולוגיה. כל ספקי הענן הציבורי יציעו בקרוב מכונות עם Optane DC.

אחד המוצרים הנוספים שאינטל הכריזה עליו הוא Intel SSD D5-P4326 – כונן SSD בתצורת "סרגל" (שמו הטכני של הסטנדרט: EDSFF E1.L – שם שממש מתגלגל בפה). כל סרגל SSD כזה יכיל בדור הנוכחי עד 15.32 טרהבייט אחסון… רק לפני שמתלהבים, האחסון מורכב מ-QLC NAND, הווה אומר שבתא NAND אפשר לאחסן 4 ביטים, מה שמאפשר לאחסן יותר מידע פר תא, אך מצד שני, מהירות הכתיבה – איטית מאוד בהשוואה לכונני SSD מדור נוכחי מבוססי TLC (כלומר 3 ביטים בתא). אינטל ושותפיה ימכרו שרת 1U שבו יהיה ניתן להכניס 32 סרגלים כאלו ליצור אחסון עד כמעט חצי פטהבייט שמיועד יותר לאחסון מידע לקריאה, ובמילים אחרות – לא מאחסנים על זה מכונות וירטואליות, קונטיינרים ושאר דברים שמצריכים קריאה/כתיבה מהירה יותר ממה שאותם סרגלי SSD יכולים להציע.

הבעיה המרכזית במוצר היא התחרות שלו מול דיסקים קשיחים מכניים. נכון, SSD נותן מהירות קריאה הרבה יותר גבוהה מכל דיסק מכני, אבל דיסק מכני כמו Seagate Baracuda בגודל 14 טרהבייט ל-Enterprise עולה בסביבות ה-550$ ואילו סרגל של 15.3 טרהבייט של אינטל עולה פי 8. את עניין הבדלי הקריאה/כתיבה ניתן תמיד לפתור בעזרת מספר דיסקים SSD שישמשו ל-Cache כך שהפתרון של אינטל עדיין אינו שווה לדעתי מבחינה כלכלית.

לסיכום: אינטל הציגה מספר מוצרים חדשים ומספר שדרוגים מעניינים (כמו המעבדים) אך לא כל המוצרים שווים רכישה כעת. חלק לא מבוטל מהטכנולוגיות שהוצגו עדיין אינו "בשל" ל-Enterprise ומצריך תפוצה ושימוש נרחבים על מנת לתקן באגים ולפתח תמיכה למוצרים. לכן, השמרנות שמאפיינת כל כך את שוק ה-Enterprise מוצדקת במקרים כאלו ולא מומלץ לעניות דעתי לרכוש כל טכנולוגיה, רק כי היא הוכרזה ברעש וצלצולים.

על תכנון מפרט שרתים

לפני זמן מה קיבלתי פניה מלקוח שנתתי לו יעוץ לגבי מפרט לשרת שיריץ אפליקציה מסויימת כבדה. הם רכשו את השרת ממשווק מורשה של DELL, מערכת הפעלה והאפליקציה הותקנו והם היו מרוצים. לאחר זמן מה הם רצו שרת נוסף והם החליטו פשוט לשלוח את המפרט שנתתי להם לאותו משווק כדי לרכוש שרת זהה נוסף. השרת הגיע, הם ביצעו Clone לשרת הראשון, והיו בטוחים שהשרת השני ירוץ כמו השרת הראשון.

זה לא קרה. השרת השני נתן ביצועים מופחתים בערך ב-15%, למרות שמדובר באותם מעבדים, אותם דיסקים ואותה כמות זכרון. אז הם הרימו טלפון לעבדכם הנאמן וכך מצאתי את עצמי קופא מקור בחדר שרתים בחברה מסויימת בודק מדוע.

לשמחתי זה לא לקח זמן רב. פתחתי את השרת השני החדש והבעיה התגלתה במהירה. המשווק מכר ללקוח שרת עם אותה כמות זכרון שהוא ביקש, אך הזכרון היה מורכב מ-DIMM בגדלים שונים ללא שום Balance בין 2 בקרי הזכרון של כל מעבד. השארתי את עניין הויכוחים עם המשווק ללקוח. אחרי שהזכרון הוחלף לפי המפרט שנתתי – הביצועים היו בדיוק כמו השרת הראשון.

יש לא מעט אנשים בתחום הגדרות ומכירת שרתים שלא ממש מעודכנים בטכנולוגיות שנמצאים בתוך השרתים. ניקח לדוגמא את תחום הזכרון: השרתים הנמכרים כיום אצל רוב המשווקים – מבוססים על Xeon SP של אינטל או EPYC של AMD. ב-EPYC הדברים מאוד פשוטים: יש לכל מעבד 8 ערוצי זכרון לכל מעבד, ואם אתה רוצה את הביצועים המקסימליים שהמעבד יכול לתת, אתה פשוט קונה זכרון לכל הערוצים. כך לדוגמא אם אתה רוצה 256 ג'יגהבייט לשרת עם מעבד אחד, אתה פשוט קונה 8 מקלות SDRAM ECC מיצרן השרת, כשכל DIMM הוא בגודל 32 ג'יגהבייט.

באינטל המצב שונה. בעבר למעבדי Xeon היו 3 ערוצי זכרון וכל ערוץ זכרון הצריך 3 מקלות DIMM זהים, כך שעל מנת לקבל ניצול מקסימלי של ביצועי מעבד/זכרון, היית צריך להכניס 9 מקלות DIMM. רוצה לדוגמא להכניס 128 ג'יגהבייט זכרון למעבד? שדרג טיפה ל-144 ג'יגה זכרון ורכוש 9 מקלות של 16 ג'יגהבייט זכרון. כיום המצב שונה במעט, ולכל מעבד Xeon SP יש 2 בקרי זכרון, עם 6 ערוצים לכל מעבד. כל ערוץ מחובר ל-2 מקלות DIMM ויש דרכים שונות לקבל Balanced Memory. למי שמעוניין, המסמך הזה מ-LENOVO מסביר את הדברים בהרחבה (וההסבר מתאים לכל שרת מבוסס Xeon SP, לא חשוב מי היצרן).

גם בגיזרת הדיסקים דברים משתנים. לא מעט אנשי IT היו מריצים תוכנות מדידה שונות למשך יום יומיים כדי לקבל מצב ולהחליט אם לרכוש דיסקים SSD שהם Read Intensive או Mixed Intensive. אני חולק על השיטה הזו הואיל והיא לא יכולה לקחת בחשבון צרכים עתידיים, וההפתעה הכי גדולה שאני מבשר לאנשי IT – ההבדלים בין Read ל-Mixed מבחינת מחיר – צנחו. אם לדוגמא תשוו דיסק SSD של מיקרון או אינטל או סמסונג שהוא Read Intensive לדיסק SSD כמו PM883 של סמסונג (שנמכר ע"י כל יצרני השרתים, אגב, עם תמיכה מלאה ו-SLA) הוא 100-120$ כשאנחנו מדברים על גודל דיסק SSD זהה, וחיבור SATA. אז אם לדוגמא אתם רוכשים לשרת 5 דיסקים, האם הפרש של 500-600$ בעלות הכוללת של השרת, זה מה שישבור את הדיל?

תחום נוסף הוא חיבוריות לרשת. לא מעט חברות עוברות ל-10 ג'יגה ובמקרים רבים מתקבלת החלטה לחבר את השרת ב-teaming של זוג בשיטת חיבור Active/Passive, כך שאם חיבור אחד נופל, חיבור שני ימשיך לעבוד. צר לי, זה לא יעבוד אם מחברים את זה לאותו כרטיס או ללוח האם מסיבה פשוטה: בכרטיס או לוח האם יש מעבד אחד ואם יש בו תקלה, אף אחד מהחיבורים לא יעבוד. זה כן יכול לעבוד אם לדוגמא סיב נפגם, אבל על מנת לכסות את מקסימום האפשרויות לתקלות, תצטרכו 2 כרטיסי רשת נפרדים ולחבר אותם ב-Teaming.

כבעל עסק ליעוץ, אני מטבע הדברים ממליץ לשכור את שרותי העסק שלי ליעוץ, אבל מי שלא רוצה/לא יכול, אולי כדאי שיעשה את הדברים הבאים לפני שמחליטים לרכוש שרתים:

  • בישראל אין חנות Online לאף יצרן שרתים ואתם גם לא תקבלו את מלוא הקטלוג של חלקי החומרה שהיצרן מייצר/משווק, לכן אני ממליץ להיכנס לחנות Online בחו"ל, ו"לבנות" את השרת שלכם. המחיר כמובן אינו כמו המחיר שתשלמו בישראל, אבל תוכלו לראות בדיוק את האפשרויות שיש לכם במקום לסמוך על איש שיווק שבמקרים רבים לא יודע על מה הוא סח (מבלי לפגוע במישהו).
  • תכננו את הזכרון באופן אופטימלי, אך תשדלו לא לרכוש דברים שלא תוכלו להשתמש בהם מאוחר יותר בעת שדרוג, כמו מקלות זכרון של 4 ג'יגהבייט.
  • אם אתם מתכננים פרויקט שהשרתים יבצעו בו עבודת Scale Out, יהיה עדיף לרכוש מספר מצומצם יותר של שרתים "חזקים" מאשר כמות גדולה יותר של שרתים "חלשים". הסיבה לכך פשוטה: יותר תחזוקה, יותר עלות של חשמל, תופס יותר מקום. אז במקום 20 שרתים חלשים, 10 חזקים יעשו את העבודה ויחסכו את הדברים שציינתי לעיל.
  • מעבדים: כיום המצב הוא שבאותו מחיר שאתם רוכשים מעבד אינטל עם 4 ליבות, אתם יכולים לרכוש EPYC של AMD עם 8 ליבות. לא עדיף לקבל יותר באותו מחיר? (ולא, אל תתנו למסמכי השיווק של אינטל לבלבל אתכם, במקרים רבים הנתונים מעוותים/מוטים).
  • דיסקים: לכו על Mixed ותחסכו לעצמכם הפתעות עתידיות. ההבדל במחיר אינו כה משמעותי.
  • רשת: עדיף 2 כרטיסי רשת מאשר לחבר לאחד עם 2-4 חיבורים לשם שרידות.
  • VDI: למי שלא מודע, nVidia כעת גובה על ה-Grid שלהם תשלום חודשי. הגיע הזמן שתכירו את ה-Fire Pro של AMD שעובד מצוין על VMWare, Citrix, Microsoft – שם לא תשלמו חודשי.

 

על VDI ולקוחות שונים

אתחיל בשאלה: שאלתם את עצמכם פעם, כשאתם צריכים יעוץ מבחוץ, מה ההבדל בין יועץ טוב לבין יועץ .. פחות טוב? אפשר לכתוב על כך כמה וכמה פוסטים מאוד ארוכים, אך אני אתמצת את התשובה במשפט פשוט: יועץ טוב יתאים את הפתרון ללקוח. יעוץ פחות טוב – ינסה לשנות את "הלקוח" לפתרון.

בתחום ה-VDI, יש 3 פתרונות ש"שולטים" בשוק: Horizon של VMWare, ה"סלט" של Citrix (כמו Xen Desktop יחד עם כלים אחרים) וכמובן הפתרון של מיקרוסופט. בכל הפתרונות ניתן או "לפרסם" אפליקציות כך שיצוצו כחלונות נפרדים המציגים אפליקציה בלבד או שניתן להקים מכונות וירטואליות ועליהן "להלביש" פרופילים, ויש כמובן את שיטת ה"ערימות" – הקמה של מספר מכונות VM שמשוייכות קבוע למשתמש פר VM.

בהינתן החומרה הנכונה וההגדרות הנכונות, כל הפתרונות יכולים לתת תוצאות מעולות בכל מה שקשור ל-VDI, החל מרמת הפקידה שמשתמשת באופיס ודפדפן וכלה במשתמשים שצריכים להריץ אפליקציות תלת מימד. כולם תומכים בהאצת GPU (למעט מיקרוסופט שירדה מ-RemoteFX ב-Windows Server 2016 והולכת להוציא משהו בקרוב שיקרא GPU-P לצרכים של גרפיקה למשתמש מרוחק).

כל החברות הגדולות במשק משתמשות כבר בפתרון VDI או "מעין VDI". לכו לכל נציגות סלולרית בקניון ואתם תוכלו לראות במסכים של המוכרים חיבור RDP לחוות השרתים של אותה חברת סלולר. על המחשב המקומי לא רץ כמעט כלום (אגב, בלא מעט מקרים אותן חברות גדולות מוותרות על רכישת Thin Client יעודי מכיוון שזה יותר זול להן לרכוש PC בקצה המאוד נמוך עם Windows). רוב המשרדים הממשלתיים, חברת החשמל וכו' משתמשים ב-Citrix לצרכי VDI. חברות גדולות אחרות שלא ממש משתמשות ב-VDI הן חברות השיווק הגדולות (שופרסל, רמי לוי וכו') בקופות הרושמות (כולל הקופות החדשות לשרות עצמי) – שם עדיין יש PC עם דיסק קשיח שמטעין שורת אפליקציות לאחר שה-Windows עולה. אחד הדברים שגיליתי לאחרונה זה שכשבמשרד ממשלתי (נניח רשות המסים) אם ה-Thin Client שלהם (שמשום מה מטעין Windows 10 בזמן Boot, כך שאני לא בדיוק יודע למה הם צריכים Thin Client) לא מצליח להתחבר ל-Store Front של Citrix וזה קורה לכולם באותו סניף – אז הם פשוט מפסיקים לקבל לקוחות ובאותו יום אין עבודה. ברשת שיווק שמרוויחה כסף מכל לקוח, סיטואציה כזו היא הסיוט הכי שחור להנהלה, ולכן לא נראה לי שבעתיד הקרוב הם יעברו למשהו כמו VDI.

מה שציינתי לעיל מדבר על גופים גדולים, הדברים חלים לעיתים גם על גופים בינוניים, אבל כשזה מגיע לעסקים קטנים – הפתרונות הנ"ל לגבי VDI פשוט לא רלוונטיים ואת זה גיליתי לאחר כמה שיחות עם בעלי משרדי עורכי דין, רואי חשבון וסוכנויות ביטוח. שם, ברוב המקרים, רכישת ברזלים תוכנה, הרכבה והגדרה של הכל – מגיעה מהכיס של הבעלים או מחשבון החברה, וכשמציגים להם מחירים של הפתרונות האלו לא תמצאו אפילו משרד אחד שיסכים לרכוש זאת. זה לא רק עניין המחיר, זה עניין הצדקת הרכישה.

מדוע שהם בעצם ירכשו? בגלל ש-PC יכול להתקלקל? כיום אפשר ב-500-700$ להשיג PC פשוט בקצה הנמוך (כולל זכרון ו-SSD במקום דיסק מכני), וכל מה שנותר לעשות זאת להעביר את ה-DATA (כולל OS) ממערכת ישנה לחדשה ואולי להתקין דרייברים. בגלל גיבויים? אפשר לקנות NAS קטן, להתקין תוכנה כמו Macrium Reflect שתגבה את כל המכונות לאותו NAS. העלות של כל העניין ממש שולית.

היכן עסקים קטנים כן ירצו להקשיב ליתרונות VDI ולהטמעתם? רק כשהדברים הבאים ימולאו:

  • מחיר – זול. הפתרונות של Citrix ו-VMWare עפים ישר מהחלון. של מיקרוסופט – אולי.
  • שקט – תתפלאו בכמה משרדים אין ממש בידוד למחסן שאפשר להכניס שם שרת 1U או 2U, ובמשרד די שקט, רעש כזה בולט (יש לי כמה כאלו פה בבית, מנסיון!)
  • שרות ותחזוקה ל-3-5 שנים, בלי זה אין על מה לדבר.
  • עלות חד פעמית – לא רשיונות בתשלום חודשי. (ביי ביי nVidia ו-Grid!)
  • שרות ותמיכה מקומיים ובעברית.

ניסיתי בזמן האחרון עם אותם בעלי משרדים לעשות להם סימולציה על VDI ומה שזה יתן, ואני יכול לאמר שהיתה בהחלט התעניינות, ולכן התחלתי יותר ויותר להשקיע משאבים בנידון כולל בניית דברים שהם custom אבל בסוף זה יעבור למשהו ארוז ומוכן.

המטרה שלי בסופו של דבר לגבי VDI לעסקים קטנים היא לא לשווק משהו בלעדי של העסק שלי לכולם, אלא להיפך – יש המון המון עסקים שנותנים שרותי מחשוב לעסקים קטנים, ושהם ימכרו את זה וירוויחו מכך, ואני אמכור להם (לאותם נותני שרות מחשוב) שרות תמיכה במקרים שלהם אין ידע בפתרון. אני שואף להכניס כמה שיותר חברות שמוכרות ברזלים ושרותים ללקוחות קצה לעניין. וכשזה יהיה מוכן, אפרסם תיעוד ווידאו קליפים איך לבצע את הדברים.

לסיכום: יש לקוחות שיכול להתאים להם פתרון X או Y לצרכי VDI, אבל יש לקוחות שצריך להתאים להם פתרון יעודי ויחודי. זה שחברת X הטמיעה פתרון Y לא אומר שהפתרון יכול להתאים תמיד גם לכם מכל מיני סיבות, ולכן כדאי לבדוק דברים היטב ואם צריך – לבדוק מה ניתן לבנות עבור הלקוח בהתחשב בצרכיו ובתקציב שיש עבור הפרויקט.

לפני רכישה – כדאי לחשוב קדימה

כאן בארץ, לא חסרים ארגונים ועסקים שההתמחות שלהם היא בשיווק מוצרים לעסקים וחברות בכל מה שקשור ל-IT – בין אם מדובר בתוכנה, חומרה, שרותי אינטגרציה, תמיכה וכו'. זה הביזנס שלהם ומרביתם יכולים למכור לך כמעט כל מה שתרצה – בין אם זה כונן דיסקטים 5.25" ועד Mainframe – כולל שילוב ואינטגרציה של מה שהם מוכרים. לגטימי? בהחלט.

יש לא מעט מקרים, לעומת זאת, שהדברים שהולכים למכור לכם – לא תמיד מתאימים, והדבר יכול להתגלות כבר בזמן הקרוב או שנתיים שלוש קדימה. בפוסט זה אדגים 3 מקרים שונים שיכולים ללמד כמה מחלקות שיווק של חברות שונות – לא תמיד צודקות, גם אם יש להם ניירות שמוכיחים אחרת.

המקרה הראשון התרחש לפני מס' חודשים: קורא נאמן של הבלוג פנה אל עבדכם הנאמן בשאלה פשוטה: החברה הגדולה שהוא עובד שם מתכננים לרכוש 4 דיסקים Optane של אינטל מסוג P4800X דרך יצרן השרתים של החברה. הסיבה לרכישת הדיסקים האלו? מצגת שהראתה להם שבביצועי SQL – הדיסקים הללו יהיו מעולים לצרכיהם, הרבה יותר מכל סטורג' שהם יחברו (בקטע הזה המצגת צודקת. דגם ה-Optane הזה בהחלט מתאים ונותן ביצועים מטורפים!). הדיסקים האלו יכנסו לתוך שרת R740 של DELL, ימופו לתוך VM שיריץ שרת Windows Server 2016 ו-SQL Server. אמרתי לו שלדעתי תהיה בעיית ביצועים, אבל אם הם מעוניינים, אשמח לבדוק להם את העניין – בתשלום. החברה הסכימה. (בכל זאת, 2500$ פר SSD, כלומר $10000 דולר במחירי ארה"ב…)

תודות לכמה יבואנים הצלחתי להשיג את הציוד להשאלה אליי ל-LAB. השרת פורק, חיברתי את ה-backplane עם כניסות U.2, הצמדתי לדיסקים חיישני חום, הפעלתי והתחלתי להריץ בדיקות עומסים שונים. לקח 10 דקות עד שאחד ה-SSD הגיע ל-95 מעלות חום. כמה דקות אחרי זה שאר ה-SSD הגיעו בערך לאותו חום – והביצועים החלו לצלול. סיכום הדו"ח שלי ללקוח הצביע על הבעיה הפשוטה: הן שרתי ה-R740 (וגם כל שרת 2U של HPE או לנובו לצורך העניין) אינם מתאימים בתצורה זו ל-SSD מבוסס Optane של אינטל. הדיסקים הללו מפיקים הרבה יותר חום מדיסקים מכניים או SSD מתחרים. הדרך היחידה להכניס 4 כרטיסים כאלו היא לרכוש 4 SSD כאלו בתצורת AIC (כלומר כרטיס PCIe) ואז למפות אותם. עדיף במקום שרת 2U להשתמש בשרת 3U (אבל אז גם מחיר השרת מטפס הואיל ומה ש-DELL מוכרת בגירסת 3U זה שרת עם 4 מעבדים).

המקרה השני קשור לפלטפורמת קונטיינרים פופולרית – Kubernetes. מישהו ממשרד ממשלתי פנה אל עבדכם הנאמן ושאל מה דעתי על הפתרון הנ"ל, מכיוון שהוא מומלץ מאוד ע"י חברת האינטגרציה הגדולה שהם עובדים איתה. לי כמובן אין שום דבר נגד Kubernetes ואני נותן גם שרותים להטמעה של הפלטפורמה (אני גובה על יעוץ ואינטגרציה, לא על מכירה של תוכנות), אבל במקרה שלהם יהיו מספר בעיות אם הם יקחו את הפתרון:

  • אבטחה – עם כל הכבוד ל-Kubernetes, הפלטפורמה עדיין אינה מאובטחת כמו OpenShift (תודות ל-SELinux ועוד מספר רכיבים).
  • Auditing, Compliance – בחברות גדולות ומשרדים ממשלתיים מאוד רוצים את זה.
  • מיגרציה בהמשך – תחשבו 4 שנים קדימה, אם Kubernetes עדיין תהיה קיימת, יהיה קשה מאוד להעביר אליה דברים שבנינו השנה לגירסה שתצא אז. במוצר כמו OpenShift היצרן מציע כלים לבצע מיגרציה.

במילים אחרות: Kubernetes זה טוב, אבל במוסדות מסויימים צריכים את ה"מעטפת" מסביב ל-Kubernetes כולל מיגרציה בהמשך – על מנת להכניס מערכת כזו.

המקרה השלישי קשור יותר ל"התלהבות" הולכת וגודלת לכל ה-Hyper Converge בוירטואליזציה (למי שלא מכיר: מערכות כמו vSAN, Simplivity, Nutanix מציעות להקים שרתים שיתנו את כל השרותים הכוללים Storage, Network, Compute – ללא צורך בסטורג' מאסיבי, סוויצ'ים יקרים וכו').

כמו תמיד, חברות כמו VMWare ואחרות לא המציאו מאפס את עניין ה-Scale Out הזה. מערכות File System ל-Scale Out קיימות זמן רב, כמו Lustre FS, מערכת Open Vswitch לצרכי Network, ופתרונות וירטואליזציה שונים הציעו זאת בסביבת HPC כבר זמן רב.  החולשה שיש ב-HPC קיימת בדיוק אותו דבר גם בפתרונות וירטואליזציה Scale Out: אם אתה צריך כמות IOPS מאסיבית של 7 ספרות ומעלה, תצטרך או לרכוש סטורג' יעודי או לרכוש הרבה יותר שרתים פיזיים מכפי שאתה צריך עבור Compute. אם אין לך צרכים כאלו, אז כן, פתרון Hyper Converge יכול להיות פתרון טוב.

לסיכום: חוות דעת נוספת ועצמאית היא דבר שלעניות דעתי חשוב מאין כמוהו. ההסתמכות על האיש הטכני שמגיע מחברת האינטגרציה היא משהו שאני לא ממש ממליץ עליו כי בסופו של דבר הביאו אותו "לדחוף" את הפתרון שהם רוצים למכור לך. יועץ חיצוני בלתי תלוי הוא אחד שמרוויח מהיעוץ ואולי אם תהיה עבודת אינטגרציה, לא ממכירת רשיונות תוכנה שהוא מנסה לקבל אחוזים על מכירתה. כפי שאתם יכולים לראות מהדוגמאות לעיל, ההמלצות המתקבלות במקרים מסויימים אינן כוללות סייגים והתחשבות במה שהלקוח כן צריך לזמן הנוכחי ובעתיד.