קצת על vSAN All Flash ועל דיסקים SSD NVME

בשבוע שעבר פרסמתי פוסט על vSAN וניסיתי לתת כמה שיותר פרטים מבחינת סוגי אחסון וכו'. הפעם אני רוצה להתרכז יותר במה ש-VMWare מגדירים "All Flash" ומה ההבדלים בעצם בין הדיסקים השונים בתוך קבוצת All Flash.

לפניכם צילום מסך מהגדרות vSAN על אחת המכונות שלי ב-LAB (לחצו להגדלה):

כפי שאתם יכולים לראות, במכונה זו אין שום דיסק מכני, הכל SSD, כאשר שישה מהדיסקים הם Samsung 860 Pro בחיבור SATA ויש SSD NVME מסוג Samsung 960 EVO שהוא SSD NVME. אני לא הגדרתי את סוג ה-Claim לדיסקים, המערכת ביצעה זאת באופן אוטומטי במקרה זה בכך שהיא בדקה מה החיבור של כל SSD למערכת: ברגע שמערכת vSAN מצאה כי יש במכונה SSD NVME, היא הגדירה אותו אוטומטית כ-Cache ואת כל שאר הדיסקים באותה מכונה כ-Capacity (במכונה זו יש סך הכל 7 דיסקים, כך שכמות ה-Disk Groups תהיה: אחת)

מבחינת VMware, ההמלצה הרשמית היא לכל Disk Group היא דיסק SSD מהיר והשאר יכולים להיות איטיים, בין אם בתצורת All Flash או Hybrid. אם לעומת זאת, אחליף את כל הדיסקים SATA SSD ב-NVME SSD, המערכת פשוט תבחר אחד מהם כ-Cache (הוא לא יהיה ממש Cache, הוא יהיה Write Buffer) והשאר יוגדרו כ-Capacity, אך למקרים כאלו ב-VMware מצפים שאם אתה הולך על הכל NVME, שהדיסק Cache לא יהיה NVME אלא משהו יותר מהיר כמו 3D Xpoint (של אינטל או מיקרון) או Z-SSD (של סמסונג).

אם תציצו כאן לדוגמא, זו אחת מהמערכות ש-VMware מציעה להרצת vSAN (יחד עם מכונות וירטואליות כמובן). מדובר בחבילה של שלושה שרתי Dell R740XD כאשר בכל שרת ישנם 3 דיסקים SSD 3D Xpoint לצרכי Cache ועוד 21 דיסקים SSD NVME בגודל 1 טרהבייט, כך שכל שרת יתרום ל-vSAN כ-3 קבוצות דיסקים. כמות אחסון הברוטו, אגב, תהיה 63 טרהבייט אבל ה"נטו" יטה יותר לכיוון ה-40 טרהבייט. מבחינת תמחור – כל שרת כזה בחו"ל עולה בערך כ-28,000 דולר (צריך לרכוש שלושה). ניקח את המחיר הנ"ל ונעגל אותו ל-100,000$.

נניח ומישהו פונה לעבדכם הנאמן ויש לו את התקציב הנ"ל, הוא רוצה vSAN עם ביצועי אחסון "הטופ שבטופ". האם הייתי ממליץ לו לרכוש מערכת כזו או בכלל לבנות מפרט שכולו דיסקים NVME ו-3D Xpoint?

התשובה שלי: אולי. אסביר מדוע.

לדיסקים SSD NVME אין חיבור לבקר דיסקים כלשהו. הם עובדים ישירות מול הליבות בשרת, וכאשר יש 24 דיסקים NVME שרוצים לקבל או להעביר מידע, הדבר יוצר עומס, במיוחד אם כמות הליבות היא מתחת ל-32 בשרת. נסו להקים (ללא קשר ל-vSAN) מערכת RAID-6 תוכנה עם 24 דיסקים NVME על מעבדי אינטל הנוכחיים, ותראו איך השרתים מגיעים מהר מאוד לתפוסה של 100% ניצול מעבד ובמקרים מסויימים המערכת פשוט תזרוק פקודות Reset לדיסקים.

אז איך VMware מוכרים פתרון כזה שלא נתקע? פשוט: הם מחלקים את כמות הדיסקים לעד 7 דיסקים בקבוצה (לא כולל דיסק ה-Cache) ואז השרת יכול לעמוד בכך בצורה טובה, מה שמוביל לבעיה השניה..

מערכת vSAN היא אחסון ב-Scale Out, כלומר אותו מידע נשמר בשרתים שונים ויש צורך לקרוא אותו (ברקע) משרת אחד ולהעתיק אותו לשרת אחר. אם נניח יש לנו רשת Infiniband במהירות של 56 ג'יגהביט, מספיק ש-2 דיסקים NVME ישלפו מידע במקביל להוצאה מהשרת, ואנחנו כבר חונקים את רשת התקשורת. אפשר כמובן לשדרג לרשת של 100 או 200 ג'יגהביט (ולהיות "חבר זהב" של אינטל או מלאנוקס) – אבל המחיר של תשתית כזו הוא סופר יקר. כל מה שאני כותב כרגע מדבר על דיסקים נוכחיים משנה שעברה. הדיסקים שיצאו במהלך החודשים הקרובים (כמו X100 של חברת מיקרון) מדברים על קצב העברת נתונים של 9 ג'יגהבייט קריאה, 5 ג'יגהבייט כתיבה. מי רוצה פקקי תקשורת היסטריים?

היכן זה כן יכול להתאים? במערכות וירטואליזציה שאינן "רועשות" – הכוונה שאין לנו סיטואציות ש-50 מכונות VM עולות במכה אחת, מתפזרות בין שרתים ועוברות תדיר בין השרתים הפיזיים. תמיד יהיו עומסים בהתחלה כשמעבירים מכונות VM בין אחסון קלאסי ל-vSAN, אולם לאחר מכן ברוב המקרים יעבור רק Delta של כל VM בהתאם ל-Policies שאנחנו קובעים ל-vSAN. עוד קהל שזה אולי יכול להתאים לו הם "ציידי הזדמנויות חומרה" – אותם ארגונים שיש בהם ליבראליות לרכוש דיסקים מצד ג' כשיש מחיר טוב. לדוגמא: Dell מוכרים בדוגמא לעיל כל SSD בגודל 1 טרהבייט מסוג P4510 של אינטל – ב-1100$. אותו דיסק נמכר ע"י חברת אינטל עצמה באמזון במחיר של … 1100 שקל, עם אחריות מלאה (אגב, גירסת 2 טרהבייט עולה כבר 3,000 שקלים בערך אחרי מסים וכו', ויש את DCT 983 של סמסונג – מעולה לצרכי Capacity בגודל 2 טרה ועולה בערך 2000 שקל, וגם מועמד לא רע בכלל לצרכי Cache). בשאר המקרים – אני ממליץ להסתכל על מערכת כמו אצלי ב-LAB (רק עם דיסקים SSD יותר גדולים ודיסק SSD NVME אחר, עדיף Mixed Intense, או אם יש כסף – לכו על P4800X, כל יצרני השרתים מוכרים זאת תחת שמות שונים).

אנצל הזדמנות זו כדי לענות לשאלה שנשאלתי כבר 4 פעמים מאנשים שונים: איך vSAN מול (הכניסו כאן שם מותג אחסון ודגם כלשהו)? והתשובה: אי אפשר להשוות. vSAN זה Scale Out בשעה שרוב מותגי האחסון הם Scale Up. פתרון vSAN יכול לזחול כשיש מעט שרתים תורמים, דיסקים מכניים ו-SSD זולים/ישנים עם רשת של 1 ג'יגה (VMware מבקשת 10 ג'יגה), ופתרון vSAN יכול לבעוט בכל פתרון אחסון Scale Up אם מכניסים SSD טובים וגדולים ל-Capacity ו-3D Xpoint כ-Cache, הרבה Disk Groups ומספר גדול של שרתים שתורמים ל-vSAN.

לסיכום: פתרון All Flash עם vSAN יכול לתת ביצועים מדהימים, אבל חשוב לדעת מה לבחור, תלוי מה מדיניות הארגון ברכישת ציוד כמו דיסקי(תעיפו מבט בלינקים), תלוי מה הרשת וכו'. חשוב לזכור – אי אפשר לעבור בין Hybrid ל-All Flash או ההיפך, וחשוב גם להסתכל על האופציה כמו בצילום מסך, רק עם דיסקים גדולים.

מתי כדאי לרכוש את ה-Optane SSD של אינטל?

כל איש IT שמבין משהו בדיסקים, מכיר בוודאי את הכלל הפשוט הבא: דיסקים מכניים מיועדים  לאחסון גדול, דיסקים SSD מיועדים לביצועים. שילוב של השניים נותן בעצם ביצועים די טובים, והקונפיגרציה הזו "מאיצה" את הקריאה/כתיבה לדיסקים. עד כאן הכל טוב ויפה. יצרני ה-SSD כמובן מנסים להתחרות בגיזרת הגודל SSD מול הדיסקים המכניים, אך המחיר שלהם מרתיע. לפני מספר שבועות קיבלתי דיסק SSD מסוג Nytro של Seagate לבדיקה, דיסק SSD בגודל 15.3 טרהבייט. מנמ"ר שקפץ לביקור אליי ראה את הביצועים והתרשם (לעניות דעתי הביצועים אינם משהו הואיל וזה דיסק שמתחבר ב-SAS ולא U.2) – אך כשהראתי לו את המחיר של הדיסק (6,500 דולר – בחו"ל) – ההתלהבות ירדה במהירות.

כל פתרון אחסון, בין אם מדובר באחסון סגור או אחסון בניה עצמית – עובד פחות או יותר באותה שיטה של "פירמידה" – מהאמצעי הכי מהיר לאמצעי הכי איטי: זכרון RAM כ-Cache ראשוני (או במקרים של אחסון קנייני כמו EMC לדוגמא – NVRAM), מתחתיו SSD שבנויים משבבי NAND SLC או MLC, ובשכבה האחרונה – הדיסקים המכניים. כל שלב ב"פירמידה" מאיץ בעצם את החלק מתחתיו (כשמסתכלים מלמעלה כלפי מטה).

הפירמידה הזו בשנתיים האחרונות "התרחבה" מעט כשאינטל וסמסונג הוציאו את ה-SSD שלהם (Optane בדגמים שציינתי לעיל) שמיועדים יותר ל-Cache. אינטל הוציאה את ה-900/905P לשוק הסמי-מקצועי ואת ה-DC P4800X לשוק ה-Enterprise ואילו סמסונג הוציאה 2 דגמים תחת המותג Z-NAND. הפתרונות הללו יושבים בין ה-RAM (או ה-NVRAM) של פתרון האחסון, לבין ה-SSD מכיוון שהם הרבה יותר מהירים מ-SSD אך אינם מגיעים למהירות של RAM. היתרון ב-Optane בדגמים לעיל הוא שהאחסון מתאים לרוב העומסים של Enterprise או בשימוש מקצועי (תיכף ארחיב), ואילו היתרון של Z-NAND מגיע כשצריכים מידע במהירות מאוד גבוהה (מ-100 ג'יגהביט ומעלה) או ב-Queue Depth מעל 128.

נשאלת השאלה: האם כדאי לרכוש בעצם את ה-Optane DC לצורך סטורג' כתחליף ל-SSD שרוכשים לשרתים (Read Intense/Mixed Intense/Write Intense)?

כדי להחליט אם לרכוש, צריכים להכיר את הטכנולוגיה. ה-Optane DC (ומשפחת ה-900) אינם מכילים שבבי NAND כמו כל דיסק SSD אחר. הם מכילים שבבי אחסון אחרים שאינטל מתעקשת לא לגלות מה יש בתוכם ואינטל קוראת להם 3D XPoint. ב-SSD הללו כל הכללים של SSD רגיל עפים מהחלון. אין צורך ב-Over Provisioning, אין צורך ב-TRIM, ב-SSD אין זכרון שמשמש כ-Cache עד שה-DATA יכתב לשבבים, ומבחינת DWPD (כלומר כמות הפעמים שמותר לכתוב על כל הדיסק ביום) – אינטל מציינת את המספר כ-30 בגירסת ה-P4800X (אני קיבלתי דיסק כזה ל-Torture testing וגם אחרי שכתבתי על כולו 50 פעם בחצי יום – הוא עדיין עבד מעולה. הצעקות שקיבלתי מהנציג באינטל – זה סיפור אחר 🙂 ). מבחינת ביצועי קריאה כתיבה – הוא עוקף את כל מה שיש בשוק (למעט ב-Queue Depth סופר גבוה – שם Z-NAND עוקף אותו). ככלל – היתרון הגדול של Optane DC זה ה-Latency המאוד נמוך שלו בהשוואה למתחרים.

הבעיה המרכזית קשורה למחיר מול ביצועים. שאל את עצמך – האם חברתכם מוכנה לשלם 3000$ על דיסק בודד בגודל 750 ג'יגהבייט? נניח שאנחנו מקימים מערכת וירטואליזציה מבוססת HCI עם VSAN. אנחנו צריכים לכל הפחות 3 דיסקים – 2 איטיים והשלישי מהיר. נאמר ש-2 ה"איטיים" יהיו SSD מבוססי Read Intense והמהיר יהיה Optane DC. יוצא מכך שרק על השלישיה הזו נוציא כמעט 4000$. לא דיברנו על רשיונות, על החומרה הנוספת בשרת, על דיסקים נוספים וכו'. מישהו שפוי ירצה לשלם מחיר כזה?

אישית, כשאני מקים פתרון סטורג' עבור לקוח – אחד הדרישות הראשונות שלי זה דיסק Optane 900P (ואם זה ל-Enterprise – אז DC P4800X) בגלל ה-Latency הנמוך. דיסק כזה משמש אותי אך ורק ל-Caching כשאני צריך לכתוב/לקרוא נתונים ממכונות/אל מכונות אחרות, כאשר החיבוריות היא לפחות 10 ג'יגהביט. במקומות אחרים, כשיש צורך ב-DB לפרודקשן שאמור לתת ביצועים מאוד גבוהים – אותו Optane DC מתאים כ-Cache בלבד, במיוחד אם מדובר ב-In memory Database, ואפילו שרת MySQL/MariaDB יכול לתת ביצועים גבוהים בהרבה בהשוואה לדיסקים SSD אחרים, אבל במקומות אחרים ה-Optane לא יתן לי הרבה בהשוואה למתחרים ופשוט לא יהיה שווה את הכסף.

אם כן חושבים לרכוש את הציוד הזה, חשוב לזכור איזו גירסה לרכוש מיצרן השרתים: AIC (מדובר בכרטיס PCIe) או U.2 (שנכנס מקדימה). בשרתים מודרניים כמו R740, DL380 וכו' לא מומלץ לרכוש מספר דיסקים כאלו להכנסה מקדימה, הואיל והקירור/איוורור אינו מספק (כן, ה-Optane דורש יותר, לכן הוא בין היחידים שכוללים צלעות קירור, לא שזה עוזר הרבה..), ועדיף לרכוש את גירסת ה-AIC. אגב, ה-Endurance של זה כזה גבוה שלעניות דעתי RAID מיותר. אתם לא תקבלו מהירות קריאה כפולה/מהירות כתיבה כפולה (בשביל זה תצטרכו לעשות Overclock לזכרון ולמעבד – דבר בלתי אפשרי במעבדי Xeon).

לסיכום: Optane 900p/DC P4800X הם דיסקים SSD בתצורה שונה, חיה אחרת שהכללים הרגילים שחלים על SSD לא חלים עליהם. הם נותנים ביצועים מטורפים, אך יחד עם זאת, הדיסקים הללו לא בנויים להחליף אחסון של SSD רגיל/מעורב. הם יותר מתאימים ל-Cache או כל דבר אחר שצריך Latency מאוד נמוך, כך שהם מתאימים רק לצרכים ספציפיים. אם יש לך צרכים כאלו, אז הדיסקים הללו יכולים לשמש כפתרון מעולה.

ההכרזה של אינטל על חומרה חדשה

אינטל לאחרונה הכריזה על שורת מוצרים חדשים – משפחת מעבדי ה-Xeon Cascade Lake שמהווים שדרוג למשפחה הנוכחית, Xeon Scalable. אלו שרוכשים שרתים מ-Dell יוכלו להתחיל לרכוש את הדור הבא של השרתים (סידרת ה-R650,750 וכו') בשבועיים הקרובים (לפחות בחו"ל). חברת HPE עוד לא הכריזה על תאריך השקה וגם לא לנובו. בסיסקו הולכים להוציא את המשפחה החדשה בערך בעוד חודש וחצי. בהשוואה למעבדים הנוכחיים, המעבדים החדשים יהיו קצת יותר מהירים אך באותו מחיר כמו הקיימים, וניתן יהיה (לאחר עדכון BIOS) להחליף את המעבדים הנוכחיים במעבדים החדשים. פוסט יותר מפורט על המעבדים החדשים (כולל רשימת המעבדים) – יופיע פה בבלוג בקרוב.

אינטל גם הכריזה על כמה דברים שנראים במבט ראשון מלהיבים ומעניינים, אולם אני ממליץ שלא לרכוש אותם, ובחלק מהמקרים אני ממליץ לחכות ל"גירסה 2.0".

נתחיל בדיסק ה-SSD החדש של אינטל, ה-DC D4800X (תבדילו בינו ל-P4800X). ה-D בשם המוצר מסמן Dual Port. זהו SSD בחיבור NVME כפול. בשביל מה צריך כפול? כדי לקבל שרידות כמובן!…

אממה .. מישהו שכח או התעלם מכלל פשוט שקיים בכל PC, החל מלאפטופ ועד שרת עצבני עם 8 מעבדים: כשיש לך תקלה בחיבור PCIe, המערכת פשוט תקפא או תקרוס. לגמרי. נסיון לבצע כיבוי/הפעלה מחדש לא יצליח לעבור את ה-POST. (בעקרון, כשמפעילים את המכונה, לאחר שהמעבד הופעל וה-BIOS נכנס לשליטה, הוא מריץ את המיקרוקוד שבתוכו, הוא מתחיל לאפס את תושבות וציודי ה-PCIe. כשהוא לא מצליח – תופיע שגיאה שלא תאפשר המשך הפעלת המכנה). במילים אחרות – זה ציוד מעולה .. אם יש לכם Mainframe של IBM, שם אפשר להחליף כמעט את כל הציוד שהמכונה פעילה (וניתן להפעיל/לכבות תושבות PCIe בזמן ריצה) – אבל לא כל כך רלוונטי בשרתים.

מכאן – נעבור ל-Optane DC.

למי שלא מכיר – Optane DC זו גירסת SSD שאינה מתחברת לתושבת PCIe אלא יושבת בתוך תושבות הזכרון של השרת. בתמונה משמאל תוכלו לראות אותם כ"מקלות זכרון" (עם המדבקות, כלומר 3 מקלות Optane DC ו-3 מקלות זכרון DDR4 ECC). כל מקל Optane DC מגיע ב-3 גדלים – 128, 256 או 512 ג'יגהבייט אחסון! (המחירים, אגב, לאלו שרוצים לדעת – ואלו לא מחירים סופיים: 893, 2461 דולר וה-512 ג'יגהבייט עדיין לא יצא). אלו אינם מקלות זכרון, כך שאם יש לך מול מעבד כ-256 ג'יגה זכרון והכנסת מקל Optane DC של 256 ג'יגהבייט, לא יהיה לך זכרון של כחצי טרה, אלא 256 ג'יגה זכרון ו-256 ג'יגה של אחסון מהיר.

בכנס Ignite האחרון, מיקרוסופט הדגימה איך ה-Optane DC עוזר בסביבת HCI שמורכבת מ-Hyper-V, Storage spaces direct וכו'. להלן הוידאו:

שימו לב למשהו אחד חשוב שקצת פחות מודגש בוידאו: כל ה-Optane DC שבשרתים בהדגמה משומש ל-Cache בלבד ולא כ-Storage! במילים אחרות, גם אם תכניס טרהבייט של Optane DC בשרת, עדיין תצטרך Storage כלשהו, ולכן השימוש של Optane DC יותר מתאים כ-Cache ל-DB או למכונות וירטואליות. ניתן לראות את הדגש הזה גם במסמך הזה שהוציאה VMWare שמתייחסת ל-Optane DC ולגירסה עתידית של vSphere.

בלינוקס יש תמיכה ל-Optane DC ובקרוב תהיה גם תמיכה לשימוש ב-Optane DC כ"זכרון". הפצות רד האט 8, SLE 15 ואחרות כבר תומכות ב-Optane DC וכל מה שצריך זה שאפליקציות יתמכו בכך, וזה יקרה ברגע שהטכנולוגיה תהיה נפוצה יותר.

בקיצור – טכנולוגיה מעניינת (אם כי יש לסמסונג המתחרה מענה "בשרוול" שנותן ביצועים בעומסים הרבה יותר גבוהים, זה בסידרת ה-Z-NAND), אבל יקח זמן עד שהיא תיכנס בצורה מסודרת לשימוש על ידי כל מיני אפליקציות ופלטפורמות. הדבר שהכי מעכב כרגע את הדברים – זה הצורך ברכישת שרתים חדשים על מנת להשתמש בטכנולוגיה. כל ספקי הענן הציבורי יציעו בקרוב מכונות עם Optane DC.

אחד המוצרים הנוספים שאינטל הכריזה עליו הוא Intel SSD D5-P4326 – כונן SSD בתצורת "סרגל" (שמו הטכני של הסטנדרט: EDSFF E1.L – שם שממש מתגלגל בפה). כל סרגל SSD כזה יכיל בדור הנוכחי עד 15.32 טרהבייט אחסון… רק לפני שמתלהבים, האחסון מורכב מ-QLC NAND, הווה אומר שבתא NAND אפשר לאחסן 4 ביטים, מה שמאפשר לאחסן יותר מידע פר תא, אך מצד שני, מהירות הכתיבה – איטית מאוד בהשוואה לכונני SSD מדור נוכחי מבוססי TLC (כלומר 3 ביטים בתא). אינטל ושותפיה ימכרו שרת 1U שבו יהיה ניתן להכניס 32 סרגלים כאלו ליצור אחסון עד כמעט חצי פטהבייט שמיועד יותר לאחסון מידע לקריאה, ובמילים אחרות – לא מאחסנים על זה מכונות וירטואליות, קונטיינרים ושאר דברים שמצריכים קריאה/כתיבה מהירה יותר ממה שאותם סרגלי SSD יכולים להציע.

הבעיה המרכזית במוצר היא התחרות שלו מול דיסקים קשיחים מכניים. נכון, SSD נותן מהירות קריאה הרבה יותר גבוהה מכל דיסק מכני, אבל דיסק מכני כמו Seagate Baracuda בגודל 14 טרהבייט ל-Enterprise עולה בסביבות ה-550$ ואילו סרגל של 15.3 טרהבייט של אינטל עולה פי 8. את עניין הבדלי הקריאה/כתיבה ניתן תמיד לפתור בעזרת מספר דיסקים SSD שישמשו ל-Cache כך שהפתרון של אינטל עדיין אינו שווה לדעתי מבחינה כלכלית.

לסיכום: אינטל הציגה מספר מוצרים חדשים ומספר שדרוגים מעניינים (כמו המעבדים) אך לא כל המוצרים שווים רכישה כעת. חלק לא מבוטל מהטכנולוגיות שהוצגו עדיין אינו "בשל" ל-Enterprise ומצריך תפוצה ושימוש נרחבים על מנת לתקן באגים ולפתח תמיכה למוצרים. לכן, השמרנות שמאפיינת כל כך את שוק ה-Enterprise מוצדקת במקרים כאלו ולא מומלץ לעניות דעתי לרכוש כל טכנולוגיה, רק כי היא הוכרזה ברעש וצלצולים.

הסברים על SSD למשתמשים ביתיים ובחברות

הערה: המאמר הבא מדבר על SSD הן עבור משתמשים ביתיים אך גם לתחנות עבודה, דסקטופים ולאפטופים. הדברים שנכתבים כאן אינם מכוונים עבור SSD לשרתים ששם מדובר על דברים מעט שונים.

כל מי שמשתמש במחשבים בצורה רצינית ומבין בנושא בוודאי מכיר ושמע על SSD, הכוננים האלקטרוניים ששומרים את המידע על שבבי NAND (כלומר: Flash). היתרון העצום שלהם על כוננים מכניים הוא כמובן מהירות הגישה: פי 2-20 בהשוואה לכל כונן דיסקים מכניים.

הבעיה מגיעה לכך שכמעוניינים לקנות כונן SSD, ההיצע בשוק ענק, הטקסט השיווקי מטעה בלא מעט מקרים, ואפשר להוסיף על כך כל מיני הצהרות של אנשים טכניים שהיו נכונים לפני 6-9 שנים אך לחלוטין לא נכונים כיום (כן, קרה לי כבר פעם שמישהו מאוד בכיר טען בישיבה כי כונני ה-SSD לא יחזיקו מעמד 5 שנים. יש לי 4 כונני SSD בשרת ZFS שמחזיקים כבר 6 שנים של SanDisk בלי שגיאה אחת והם דווקא מהסוג הכי פשוט שיש!).

בקיצור, לאלו הגולשים המעוניינים להכיר דברים, כדאי לשים את הדעות והדברים ששמעתם בעבר בצד, ולקרוא את המאמר. כל הדברים שאציין כאן הם עובדות, לא דעות ולא ספקולציות.

ניקח כונן SSD, ונפתח אותו. כך הוא נראה בצידו העליון:

כך נראה הכונן. בחלקו השמאלי יושבים מספר שבבי NAND שעליהם יאוחסן המידע. השבב עם ה-M (של חברת Marvell) הוא בעצם ה"מוח" של כונן ה-SSD. הוא הבקר שמצד אחד "מדבר" עם המחשב (החיבורים מימין) ומצד שני הוא האחראי לפריסת הנתונים על שבבי ה-NAND, תחזוקת הנתונים, טיפול בשגיאות, קריאה, כתיבה וכו'. במקרים רבים יש עוד שבב או יותר שמשמשים כזכרון חוצץ (Buffer) אשר מקבלים את הנתונים מבחוץ (אם לדוגמא אנחנו מעתיקים קובץ מבחוץ אל תוך ה-SSD) והבקר כבר דואג לקבל את הנתונים מהזכרון החוצץ ולפרוס אותם אל שבבי ה-NAND. יש עוד פעולות כמו Garbage Collection ו-TRIM שלא ניכנס אליהם אבל הם דברים מאוד חשובים לאורך חיי ה-SSD.

נעבור מכאן לשבבי ה-NAND. אלו השבבים שבהם מאוחסנים הנתונים שלנו. בתוך כל שבב כזה נמצאים מיליוני תאים שמאחסנים את הנתונים והגישה אליהם נעשית דרך הפינים מתחת לשבב. ישנם מספר סוגי תאים (SLC, MLC, TLC, QLC) פרי פיתוח של השנים האחרונות וההבדל ביניהם הוא בעצם כמות הנתונים שאפשר לאכסן פר תא. SLC לדוגמא זה Single Level Cell, כלומר בכל תא אפשר לאחסן נתון אחד וה-SSD הראשונים היו בנויים מ-SLC, כך שהם היו מהירים מצד אחד, אך כמות המידע שהיה אפשר לאחסן – היתה קטנה. MLC הגיע לאחר מכן ולמרות ש-M זה Multi, כמות הנתונים שהיה אפשרי לאחסן היתה בעצם 2 נתונים בתא. (מדוע לא קראו לזה פשוט DLC ש-D הוא Dual, אין לי מושג ירוק). אחרי MLC הגיע TLC (שנמצא ברוב כונני ה-SSD בשוק היום לסקטורים שאינם שרתים) ששם אפשר לאחסן 3 תאים והאחרון (QLC) יכול לאחסן כמות נכבדה של 4 נתונים בתא אחד.

אחת הבעיות הכי מאתגרות בתחום ה-SSD ו-NAND היתה בעצם האפשרות לאחסן כמות גדולה (אני מדבר על תקופת ה-SLC ו-MLC). יש גבול לגודל שבב שאפשר לייצר (ככל שהשבב יותר גדול, הסיכוי לתקלות בו יותר גבוה, בגלל זה מעבדים ו-GPU הם יקרים), ולכן סמסונג (ולאחר מכן חברות אחרות) החלו לעבוד על טכנולוגיה חדשה – במקום ליצור תאים יותר ויותר קטנים על מנת להכניס נתונים רבים – לבנות לגובה, וזה מה שנקרא 3D. בהתחלה סמסונג יצאה עם שבב שיש בו בעצם 32 "שכבות" ולאחר מכן 64 שכבות וכרגע הם מתחילים לייצר 96 שכבות ועובדים על 128 שכבות, כאשר בין כל השכבות יש מעין "מוטות" ותקשורת בין השכבות והבקר כמובן יכול לגשת לכל השבבים ולכל השכבות.

עכשיו שיש כמות רצינית של תאים פר שבב, ניתן לעשות מאות ג'יגהבייט וטרהבייטים, אבל ישנה בעיה אחרת: זוכרים את ה-SLC/MLC/TLC/QLC? הזמן שלוקח לכתוב לאותם תאים הוא יותר ארוך ככל שמתקדמים מ-SLC ל-MLC, מ-MLC ל-TLC, ומ-TLC ל-QLC (כאשר QLC יהיה די איטי אך יותר מהיר מכונן מכני), ולכן ה-Buffer יכול לסייע ובעצם "להחביא" את האיטיות כאשר הכתיבה בפועל תיעשה בתוך ה-SSD ברקע (בעקרון, כונן SSD הוא הרבה יותר חכם מאשר כונן דיסקים מכני. כונן SSD הוא מחשב שלם בפני עצמו הכולל מעבד, זכרון וכו').

עכשיו שאנחנו מבינים באופן עקרוני מהו SSD ומה הם התאים שבתוכו, נכיר את סוגי ה-SSD. יש מס' סוגים, אך נתרכז ב-2 סוגים, ה"קופסא" וה"מקל".

נתחיל ב"קופסא" – אלו בד"כ כונני ה-SSD שאנחנו מכירים ללאפטופים ושיכולים כמובן להיות מחוברים לתחנות עבודה, דסקטופים וכו'. כל כונני ה-SSD הם בגודל אחיד של 2.5" (יש גם 3.5" אך הם מיועדים לסקטור השרתים והם עולים עשרות אלפי דולרים) והחיבור שלהם הוא חיבור SATA רגיל בדיוק כמו חיבור דיסק קשיח מכני (לאלו שיש להם מחשב ישן דסקטופ, ניתן לרכוש כמובן בזול מתאם בין 3.5" ל-2.5" ב-eBay ובאתרים אחרים, ובחלק מהמוצרים היצרן מוסיף מתכת להתאמה, כמו חברת Kingston). אין צורך בדרייברים על מנת לקבל פעילות של כונן ה-SSD (אך יכול להיות שתצטרכו תוכנה מסויימת, עליה אדבר בהמשך). דיסק SSD כזה הוא דבר מעולה לאלו שיש להם מחשבים ניידים עם דיסקים מכניים והם מעוניינים להשביח את המחשב הנייד שלהם. ישנן מספר תוכנות חינמיות שיכולות להעביר את הנתונים מהדיסק המכני לדיסק SSD (לשם כך תצטרכו לרכוש מתאם USB ל-SATA על מנת לחבר את כונן ה-SSD בחוץ ולהשתמש בתוכנה להעביר את הנתונים ורק לאחר מכן להעביר את ה-SSD לתוך המחשב הנייד).

חוץ מגירסת ה"קופסא" יש לנו את גירסת ה"מקל" – אלו בעצם כונני SSD בתצורה שמתברגת על לוח האם של המחשב (ושל מחשבים ניידים חדשים, בחלק מהמקרים). מדובר ב"מקל" ברוחב 22 מ"מ ובאורך 80 מ"מ (יש גם גירסה של 110 מ"מ) שאותו אנחנו מחברים לחיבור מיוחד ומבריגים. החיבור נראה כך:

כפי שאתם יכולים לראות: ישנם "חורים" היכן שנמצאים הפינים של ה"מקל" והם מאוד חשובים. בכרטיסים עם 2 חורים, ה"מקל" הוא בעצם SSD בחיבור SATA, כלומר המהירות שלו תהיה בדיוק כמו קופסת SSD בחיבור SATA והיתרון היחיד שלו הוא בעצם שהוא לא תופס מקום פיזי במחשב מקדימה. לעומת זאת, אם יש חור אחד, אז מדובר במקל NVME SSD שהוא מהיר פי 4-6 מכונן SSD SATA (ולפיכך הוא גם עולה יותר).

עוד סוג חיבור שיש הוא חיבור ה-U.2, הוא מופיע בריבוע הכחול בתמונה:

חיבור זה הוא חיבור PCIe, כלומר הוא בדיוק כמו חיבור NVME SSD רק שהוא יותר מיועד לכונני SSD שיושבים במחשב דסקטופ מקדימה. החיבור הזה קיים רק בחלק מהלוחות אם החדשים והיקרים והוא מצריך כונן SSD "קופסא" עם חיבור PCIe (בד"כ בקופסת ה-SSD יהיה כבל מתאם מיוחד).

עכשיו שאנחנו מכירים גם את החיבורים וסוגי ה-SSD, נשאלת השאלה: איזה לרכוש? והתשובה, כצפוי, קצת מפותלת..

אם אתם משתמשים שכל מה שאתם עושים זה גלישה באינטנרט, הפעלת אפליקציות Web, קצת אופיס, ודברים שלא ממש גורמים למחשב שלכם "להזיע" – אז כיום כמעט כל כונן SSD יכול לתת לכם מענה. ככלל, אם קונים, אני ממליץ ללכת על גודל של 500 ג'יגהבייט ומעלה (אם התקציב מאפשר זאת).

לאלו שיותר מפתחים אפליקציות, או עובדים עם אפליקציות גרפיות כבדות (פוטושופ, עריכת וידאו, אפקטים, תלת מימד וכו') ולאלו שמעוניינים לקנות את ה-SSD הטובים בשוק, אני אציין מספר דגמים:

  • סמסונג – המלכה בשוק. דגמים של ה-960 וה-970, ה-PRO או EVO (ה-PRO יותר מהיר)
  • אינטל – ה-900P או ה-905P בסידרת ה-Optane. שימו לב שהם יקרים מאוד אך ה-905P הוא ה-SSD הכי מהיר שיש כיום בשוק נכון לשעת כתיבת שורות אלו. שימו לב – הפתרונות של אינטל יעבדו רק אם יש לכם מעבדי AMD Ryzen או i7/i5/i3 מהדור השביעי (Kaby Lake) או דור שמיני (Coffee Lake).
  • Western Digital – סידרת ה-Blue או Black בגירסת M.2 NVME.

אלו שלא מומלצים – אני בד"כ לא פוסל SSD כי כמעט תמיד יש סקטורים שזה יכול להתאים להם גם אם הם לא מהירים כל כך, אך במקרה של אינטל, סידרת ה-Optane Memory Series – בגדלים 16,32,64 ג'יגהבייט אני ממליץ לא לרכוש. הם מבחינה טכנית פשוט זבל וכל דיסק SSD מכל יצרן יתן ביצועים הרבה יותר גבוהים עם הפרשי מחירים זעומים.

אז בחרנו SSD ואנחנו מכניסים אותו למחשב. לפרמט ולהשתמש? כמעט. כלל חשוב הוא לא לפרמט את הדיסק לניצול 100% ממנו אלא רק 90%. הסיבה לכך פשוטה: במסגרת התהליכים שבקר ה-SSD מבצע, הוא בודק תאים לבדוק שהנתונים תקינים וכשהוא נתקל בנתונים שיש סיכוי שתהיה בעיה איתם בקריאה/כתיבה, הוא מעבר אוטומטית את הנתונים לחלק שלא פירמטנו והוא מסמן את המקום שממנו הוא העתיק כמקום לא שמיש, כך שאנחנו אולי מפסידים חלק מהמקום בדיסק, אך מצד שני אנחנו מאריכים את אורך חיי הדיסק, וזה שווה את המחיר.

האם כדאי לוותר על הדיסק המכני? התשובה שלי: לא. דיסק מכני הוא מצד אחד זול ומצד שני יכול להכיל הרבה יותר מידע מאשר SSD (סתם לידיעה, סמסונג 850 EVO בגודל 4 טרהבייט יעלה לכם בחו"ל 1500-1700 דולר). בד"כ יצרן ה-SSD יציע תוכנה יחד עם ה-SSD שתעביר את ה-Windows ל-SSD וידע לנטר את הדיסקים כך שנתונים שהקריאה שלהם שכיחה יועברו ל-SSD והנתונים שבקושי קוראים אותם ישארו בדיסק המכני. לאינטל יש תוכנה כמו RST שעושה זאת ול-AMD יש הסכם עם חברת Enmotus למכור תוכנה ב-20$ שנקראת FuzeDrive (היא אמנם מצריכה התקנה של Windows על ה-SSD מחדש, אבל היא עושה עבודה הרבה יותר רצינית מה-RST של אינטל), ויש כמובן תוכנות צד ג' בשוק ל-Windows (חלקן חינמיות). למשתמשי Linux – אם אתם משתמשים ב-LVM במחשב שלכם, אז ה-LVM יכול לקבל כונן או ווליום או Partition כ-Cache ואפשר כמובן להשתמש בדברים כמו bcache כדי לקבל את אותה תוצאה.

דברים נוספים שכדאי לדעת:

  • מעתיקים קבצים של כמה ג'יגהבייט כל אחד? אל תצפו לכתיבה מהירה לאורך כל ההעתקה ברוב כונני ה-SSD (למעט ה-900P/905P וה-970 PRO). הסיבה? הזכרון החוצץ (Buffer) מתמלא ומתחיל לכתוב את הנתונים לשבבי ה-NAND וברגע שאין זכרון פנוי, הכתיבה נהיית איטית.
  • עובדים בפוטושופ ופתחתם קובץ עם מאות שכבות? אם זה לא SSD מהמהירים – יכול להיות שזה יהיה איטי במעט. זיכרו: דיסקים SSD זולים הם טובים בהעברת נתונים רציפה כאשר מדובר בהעברת קובץ גדול, אולם כשיש לו עוד 200 קבצים נוספים, הוא יהיה איטי.
  • מחירים: מחירי ה-SSD יורדים אבל לאט. אם מחירי הדגמים שציינתי לעיל יקרים, אתם מוזמנים להתסכל דור אחד אחורה או לקרוא כל מיני אתרים שמציינים מיקומים שונים לכונני SSD ומחירים.
  • אחריות – כיום כמעט כל יצרני ה-SSD נותנים מינימום 3 שנות אחריות, אינטל וסמסונג בד"כ נותנים 5 שנות אחריות ולדגמים מסויימים אפילו 10 שנות אחריות. חשוב לכל ה-Corporate.
  • משתמשי לינוקס ובחירת File System – אין ממש הבדל. כיום גם XFS, EXT4, BTRFS תומכים בפרמטר mount או עם פקודת fstrim. מערכת ZFS לעומת זאת תתמוך בגירסה 0.8 בפונקציונאליות הזו (אם כי קיימים טלאים שאפשר להשתמש בהם).
  • קונים גירסה M.2 והולכים לגרום למחשב "להזיע"? חפשו ברשת קירור טרמי ל-M.2. אחד החסרונות של M.2 (בחלק מהמקרים) הוא כשה"מקל" חם מאוד – הביצועים יורדים על מנת לשמור עליו. הפתרון הזה לדוגמא, הוא פתרון טוב.

ומה העתיד? אינטל דוחפת חזק את פתרון ה-XPoint שלה שהוא כרגע המהיר ביותר בשוק (אבל גם היקר ביותר – ה-905P שלהם בגירסת ה-600 ג'יגהבייט עולה 1220$ והוא יותר מהיר מגירסת ה-Enterprise שלהם!) אבל סמסונג לא נמצאת מרחוק עם ה-Z-SSD שלהם שמציע ביצועי קריאה יותר מהירים מכל דבר אחר בשוק (ביצועי כתיבה, לא משהו בדור הנוכחי).
סביר להניח שבשנה הבאה נראה SSD מבוסס QLC (שזה 4 נתונים נכתבים/נקראים בכל תא). החסרון הענק שלו הוא מהירות הכתיבה שתהיה די "זוחלת" (בהשוואה ל-SSD אחרים), אבל מצד שני נוכל לרכוש SSD כאלו בגדלים של 4 ו-8 טרהבייט במחיר שלא מגיע לאלפי דולרים ובכך נוכל להחליף כוננים מכניים ב-SSD.

לסיכום: כונני SSD נותנים ביצועים הרבה יותר מהירים מכונני דיסקים מכניים, אבל הם גם "חיות" שונות וכדאי לשים לב להבדלים. השוק מוצף ב-SSD שונים ולכן כדאי לבצע מחקר קטן לפני ששולפים את כרטיסי האשראי. כדאי לשים לב להוראות יצרן לדברים כמו לא לפרמט SSD ל-100% ואם מדובר ב"מקל" M.2 לגבי עניין החום.

Exit mobile version